@article{RM_2007_62_3_a5,
author = {E. Feireisl},
title = {Asymptotic analysis of the full {Navier{\textendash}Stokes{\textendash}Fourier} system: {From} compressible to incompressible fluid flows},
journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
pages = {511--533},
year = {2007},
volume = {62},
number = {3},
language = {en},
url = {http://geodesic.mathdoc.fr/item/RM_2007_62_3_a5/}
}
TY - JOUR AU - E. Feireisl TI - Asymptotic analysis of the full Navier–Stokes–Fourier system: From compressible to incompressible fluid flows JO - Trudy Matematicheskogo Instituta imeni V.A. Steklova PY - 2007 SP - 511 EP - 533 VL - 62 IS - 3 UR - http://geodesic.mathdoc.fr/item/RM_2007_62_3_a5/ LA - en ID - RM_2007_62_3_a5 ER -
%0 Journal Article %A E. Feireisl %T Asymptotic analysis of the full Navier–Stokes–Fourier system: From compressible to incompressible fluid flows %J Trudy Matematicheskogo Instituta imeni V.A. Steklova %D 2007 %P 511-533 %V 62 %N 3 %U http://geodesic.mathdoc.fr/item/RM_2007_62_3_a5/ %G en %F RM_2007_62_3_a5
E. Feireisl. Asymptotic analysis of the full Navier–Stokes–Fourier system: From compressible to incompressible fluid flows. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 62 (2007) no. 3, pp. 511-533. http://geodesic.mathdoc.fr/item/RM_2007_62_3_a5/
[1] R. Klein, N. Botta, T. Schneider, C. D. Munz, S. Roller, A. Meister, L. Hoffmann, T. Sonar, “Asymptotic adaptive methods for multi-scale problems in fluid mechanics”, J. Engrg. Math., 39:1 (2001), 261–343 | DOI | MR | Zbl
[2] R. Klein, “Asymptotic analyses for atmospheric flows and the construction of asymptotically adaptive numerical methods”, ZAMM Z. Angew. Math. Mech., 80:11–12 (2000), 765–777 | 3.0.CO;2-1 class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI | MR | Zbl
[3] A. Majda, Introduction to PDEs and waves for the atmosphere and ocean, Courant Lect. Notes Math., 9, Amer. Math. Soc., Providence, RI, 2003 | MR | Zbl
[4] G. L. Eyink, “Local $4/5$-law and energy dissipation anomaly in turbulence”, Nonlinearity, 16:1 (2003), 137–145 | DOI | MR | Zbl
[5] T. Nagasawa, “A new energy inequality and partial regularity for weak solutions of Navier–Stokes equations”, J. Math. Fluid Mech., 3:1 (2001), 40–56 | DOI | MR | Zbl
[6] G. P. Galdi, An introduction to the mathematical theory of the Navier–Stokes equations. Vol. 1. Linearized steady problems, Springer Tracts Nat. Philos., 38, Springer-Verlag, New York, 1994 | MR | Zbl
[7] S. Klainerman, A. Majda, “Singular limits of quasilinear hyperbolic systems with large parameters and the incompressible limit of compressible fluids”, Comm. Pure Appl. Math., 34:4 (1981), 481–524 | DOI | MR | Zbl
[8] D. B. Ebin, “The motion of slightly compressible fluids viewed as a motion with strong constraining force”, Ann. of Math. (2), 105:1 (1977), 141–200 | DOI | MR | Zbl
[9] T. Alazard, “Low Mach number flows and combustion”, SIAM J. Math. Anal., 38:4 (2006), 1186–1213 | DOI | MR | Zbl
[10] T. Alazard, “Low Mach number limit of the full Navier–Stokes equations”, Arch. Ration. Mech. Anal., 180:1 (2006), 1–73 | DOI | MR | Zbl
[11] R. Danchin, “Low Mach number limit for viscous compressible flows”, M2AN Math. Model. Numer. Anal., 39:3 (2005), 459–475 | DOI | MR | Zbl
[12] G. Métivier, S. Schochet, “The incompressible limit of the non-isentropic Euler equations”, Arch. Ration. Mech. Anal., 158:1 (2001), 61–90 | DOI | MR | Zbl
[13] S. Schochet, “The mathematical theory of low Mach number flows”, M2AN Math. Model. Numer. Anal., 39:3 (2005), 441–458 | DOI | MR | Zbl
[14] P.-L. Lions, N. Masmoudi, “Incompressible limit for a viscous compressible fluid”, J. Math. Pures Appl. (9), 77:6 (1998), 585–627 | DOI | MR | Zbl
[15] P.-L. Lions, N. Masmoudi, “On a free boundary barotropic model”, Ann. Inst. H. Poincaré Anal. Non Linéaire, 16:3 (1999), 373–410 | DOI | MR | Zbl
[16] B. Desjardins, E. Grenier, P.-L. Lions, N. Masmoudi, “Incompressible limit for solutions of the isentropic Navier–Stokes equations with Dirichlet boundary conditions”, J. Math. Pures Appl. (9), 78:5 (1999), 461–471 | DOI | MR | Zbl
[17] D. Bresch, B. Desjardins, E. Grenier, C.-K. Lin, “Low Mach number limit of viscous polytropic flows: Formal asymptotic in the periodic case”, Stud. Appl. Math., 109:2 (2002), 125–149 | DOI | MR | Zbl
[18] J. Leray, “Sur le mouvement d'un liquide visqueux emplissant l'espace”, Acta Math., 63:1 (1934), 193–248 | DOI | MR | Zbl
[19] E. Feireisl, Dynamics of viscous compressible fluids, Oxford Lecture Ser. Math. Appl., 26, Oxford Univ. Press, Oxford, 2004 | MR | Zbl
[20] E. Feireisl, “Mathematical theory of compressible, viscous, and heat conducting fluids”, Comput. Appl. Math. (to appear)
[21] E. Feireisl, “Stability of flows of real monoatomic gases”, Comm. Partial Differential Equations, 31:2 (2006), 325–348 | DOI | MR | Zbl
[22] R. Kh. Zeytounian, “Joseph Boussinesq and his approximation: a contemporary view”, C. R. Mécanique, 331:8 (2003), 575–586 | DOI
[23] E. Feireisl, A. Novotný, H. Petzeltová, “On the incompressible limit for the Navier–Stokes–Fourier system in domains with wavy bottoms”, Arch. Ration. Mech. Anal. (to appear)
[24] E. Feireisl, J. Málek, A. Novotný, I. Straškraba, “Anelastic approximation as a singular limit of the compressible Navier–Stokes system”, Comm. Partial Differential Equations (to appear)
[25] D. R. Durran, “Improving the anelastic approximation”, J. Atmospheric Sci., 46:11 (1989), 1453–1461 | 2.0.CO;2 class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI
[26] F. B. Lipps, R. S. Hemler, “A scale analysis of deep moist convection and some related numerical calculations”, J. Atmospheric Sci., 39:10 (1982), 2192–2210 | 2.0.CO;2 class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI
[27] O. A. Ladyzhenskaya, Matematicheskie voprosy dinamiki neszhimaemoi zhidkosti, 2-e izd., Nauka, M., 1970; O. A. Ladyzhenskaya, The mathematical theory of viscous incompressible flow, Gordon and Breach, New York–London–Paris, 1969 | MR | Zbl
[28] R. Temam, Navier–Stokes equations. Theory and numerical analysis, Stud. Math. Appl., 2, North-Holland, Amsterdam–New York–Oxford, 1977 | MR | Zbl
[29] L. Caffarelli, R. V. Kohn, L. Nirenberg, “Partial regularity of suitable weak solutions of the Navier–Stokes equations”, Comm. Pure Appl. Math., 35:6 (1982), 771–831 | DOI | MR | Zbl
[30] S. N. Antontsev, A. V. Kazhikhov, V. N. Monakhov, Kraevye zadachi mekhaniki neodnorodnykh zhidkostei, Nauka, Novosibirsk, 1983 ; S. N. Antontsev, A. V. Kazhikhov, V. N. Monakhov, Boundary value problems in mechanics of nonhomogeneous fluids, Stud. Math. Appl., 22, North-Holland, Amsterdam, 1990 | MR | Zbl | MR | Zbl
[31] P.-L. Lions, Mathematical topics in fluid mechanics. Vol. 1. Incompressible models, Oxford Lecture Ser. Math. Appl., 3, Clarendon Press, Oxford, 1996 | MR | Zbl
[32] B. Desjardins, “Regularity of weak solutions of the compressible isentropic Navier–Stokes equations”, Comm. Partial Differential Equations, 22:5–6 (1997), 977–1008 | DOI | MR | Zbl
[33] D. Hoff, “Discontinuous solutions of the Navier–Stokes equations for multidimensional flows of heat-conducting fluids”, Arch. Ration. Mech. Anal., 139:4 (1997), 303–354 | DOI | MR | Zbl
[34] D. Hoff, “Dynamics of singularity surfaces for compressible viscous flows in two space dimensions”, Comm. Pure Appl. Math., 55:11 (2002), 1365–1407 | DOI | MR | Zbl
[35] D. Hoff, D. Serre, “The failure of continuous dependence on initial data for the Navier–Stokes equations of compressible flow”, SIAM J. Appl. Math., 51:4 (1991), 887–898 | DOI | MR | Zbl
[36] V. A. Vaigant, “Primer nesuschestvovaniya v tselom po vremeni resheniya uravnenii Nave–Stoksa szhimaemoi vyazkoi barotropnoi zhidkosti”, Dokl. AN SSSR, 339:2 (1994), 155–156 ; V. A. Vaigant, “An example of the nonexistence with respect to time of the global solutions of Navier–Stokes equations for a compressible viscous barotropic fluid”, Russian Acad. Sci. Dokl. Math., 50:3 (1995), 397–399 | MR
[37] R. J. DiPerna, “Measure-valued solutions to conservation laws”, Arch. Ration. Mech. Anal., 88:3 (1985), 223–270 | DOI | MR | Zbl
[38] J. Málek, J. Nečas, M. Rokyta, M. Ružička, Weak and measure-valued solutions to evolutionary PDEs, Appl. Math. Math. Comput., 13, Chapman and Hall, London, 1996 | MR | Zbl
[39] P.-L. Lions, Mathematical topics in fluid mechanics. Vol. 2. Compressible models, Oxford Lecture Ser. Math. Appl., 10, Clarendon Press, Oxford, 1998 | MR | Zbl
[40] V. A. Vaigant, A. V. Kazhikhov, “O suschestvovanii globalnykh reshenii dvumernykh uravnenii Nave–Stoksa szhimaemoi vyazkoi zhidkosti”, Sib. matem. zhurn., 36:6 (1995), 1283–1316 | MR | Zbl
[41] D. Hoff, “Strong convergence to global solutions for multidimensional flows of compressible, viscous fluids with polytropic equations of state and discontinuous initial data”, Arch. Ration. Mech. Anal., 132:1 (1995), 1–14 | DOI | MR | Zbl
[42] D. Serre, “Variations de grande amplitude pour la densité d'un fluid viscueux compressible”, Phys. D, 48:1 (1991), 113–128 | DOI | MR | Zbl
[43] A. Novotný, I. Straškraba, Introduction to the mathematical theory of compressible flow, Oxford Lecture Ser. Math. Appl., 27, Oxford Univ. Press, Oxford, 2004 | MR | Zbl
[44] E. Feireisl, A. Novotný, “On a simple model of reacting compressible flows arising in astrophysics”, Proc. Roy. Soc. Edinburgh Sect. A, 135:6 (2005), 1169–1194 | DOI | MR | Zbl
[45] E. Becker, Gasdynamik, Teubner, Stuttgart, 1966 | MR | Zbl
[46] C. Buet, B. Després, “Asymptotic analysis of fluid models for the coupling of radiation and hydrodynamics”, J. Quant. Spectroscopy Radiative Transfer, 85:3–4 (2004), 385–418 | DOI
[47] J. Oxenius, Kinetic theory of particles and photons. Theoretical foundations of non-LTE plasma spectroscopy, Springer Ser. Electrophys., 20, Springer-Verlag, Berlin, 1986 | MR
[48] Ya. B. Zeldovich, Yu. P. Raizer, Fizika udarnykh voln i vysokotemperaturnykh gidrodinamicheskikh yavlenii, Fizmatgiz, M., 1963 ; Ya. B. Zel'dovich, Yu. P. Raizer, Physics of shock waves and high-temperature hydrodynamic phenomena, Academic Press, New York, 1966 | Zbl
[49] S. Eliezer, A. Ghatak, H. Hora, An introduction to equations of states: theory and applications, Cambridge Univ. Press, Cambridge, 1986
[50] I. Müller, T. Ruggeri, Rational extended thermodynamics, Springer Tracts Nat. Philos., 37, Springer-Verlag, New York, 1998 | MR | Zbl
[51] G. Gallavotti, Statistical mechanics. A short treatise, Texts Monogr. Phys., Springer-Verlag, Berlin, 1999 | MR | Zbl
[52] S. E. Bechtel, F. J. Rooney, M. G. Forest, “Connection between stability, convexity of internal energy, and the second law for compressible Newtonian fuids”, J. Appl. Mech., 72:2 (2005), 299–300 | DOI | MR | Zbl
[53] R. J. DiPerna, P.-L. Lions, “Ordinary differential equations, transport theory and Sobolev spaces”, Invent. Math., 98:3 (1989), 511–547 | DOI | MR | Zbl
[54] B. Ducomet, E. Feireisl, “On the dynamics of gaseous stars”, Arch. Ration. Mech. Anal., 174:2 (2004), 221–266 | DOI | MR | Zbl
[55] K. R. Rajagopal, M. Ružička, A. R. Shrinivasa, “On the Oberbeck–Boussinesq approximation”, Math. Models Methods Appl. Sci., 6:8 (1996), 1157–1167 | DOI | MR | Zbl
[56] E. Feireisl, A. Novotný, “The Oberbeck–Boussinesq approximation as a singular limit of the full Navier–Stokes–Fourier system”, J. Math. Fluid Mech. (to appear)
[57] E. Feireisl, A. Novotný, “On the low Mach number limit for the full Navier–Stokes–Fourier system”, Arch. Ration. Mech. Anal. (to appear) | MR
[58] S. Schochet, “Fast singular limits of hyperbolic PDEs”, J. Differential Equations, 114:2 (1994), 476–512 | DOI | MR | Zbl
[59] N. Masmoudi, “Asymptotic problems and compressible and incompressible limits”, Advances in mathematical fluid mechanics (Paseky, Czech Republic, 1999), eds. J. Málek, J. Nečas, M. Rokyta, Springer, Berlin, 2000, 119–158 | MR | Zbl
[60] N. Garofalo, F. Segàla, “Another step toward the solution of the Pompeiu problem in the plane”, Comm. Partial Differential Equations, 18:3–4 (1993), 491–503 | DOI | MR | Zbl
[61] S. A. Williams, “Analyticity of the boundary for Lipschitz domains without Pompeiu property”, Indiana Univ. Math. J., 30:3 (1981), 357–369 | DOI | MR | Zbl
[62] R. Dalmasso, “A new result on the Pompeiu problem”, Trans. Amer. Math. Soc., 352:6 (2000), 2723–2736 | DOI | MR | Zbl
[63] M. I. Vishik, L. A. Lyusternik, “Regulyarnoe vyrozhdenie i pogranichnyi sloi dlya lineinykh differentsialnykh uravnenii s malym parametrom”, UMN, 12:5(77) (1957), 3–122 | MR | Zbl
[64] E. Feireisl, A. Novotný, H. Petzeltová, “On the existence of globally defined weak solutions to the Navier–Stokes equations”, J. Math. Fluid Mech., 3:4 (2001), 358–392 | DOI | MR | Zbl
[65] E. Feireisl, “Compressible Navier–Stokes equations with a non-monotone pressure law”, J. Differential Equations, 184:1 (2002), 97–108 | DOI | MR | Zbl
[66] A. Majda, “High Mach number combustion”, Reacting flows: combustion and chemical reactors, Part 1 (Ithaca, 1985), Lectures in Appl. Math., 24, Amer. Math. Soc., Providence, RI, 1986, 109–184 | MR