Conformal invariance in hydrodynamic turbulence
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 62 (2007) no. 3, pp. 497-510 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

This short survey is written by a physicist. It contains neither theorems nor precise definitions. Its main content is a description of the results of numerical solution of the equations of fluid mechanics in the regime of developed turbulence. Due to limitations of computers, the results are not very precise. Despite being neither exact nor rigorous, the findings may nevertheless be of interest for mathematicians. The main result is that the isolines of some scalar fields (vorticity, temperature) in two-dimensional turbulence belong to the class of conformally invariant curves called SLE (Scramm–Löwner evolution) curves. First, this enables one to predict and find a plethora of quantitative relations going far beyond what was known previously about turbulence. Second, it suggests relations between phenomena that seemed unrelated, like the Euler equation and critical percolation. Third, it shows that one is able to get exact analytic results in statistical hydrodynamics. In short, physicists have found something unexpected and hope that mathematicians can help to explain it.
@article{RM_2007_62_3_a4,
     author = {G. Falkovich},
     title = {Conformal invariance in hydrodynamic turbulence},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {497--510},
     year = {2007},
     volume = {62},
     number = {3},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/RM_2007_62_3_a4/}
}
TY  - JOUR
AU  - G. Falkovich
TI  - Conformal invariance in hydrodynamic turbulence
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2007
SP  - 497
EP  - 510
VL  - 62
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/RM_2007_62_3_a4/
LA  - en
ID  - RM_2007_62_3_a4
ER  - 
%0 Journal Article
%A G. Falkovich
%T Conformal invariance in hydrodynamic turbulence
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2007
%P 497-510
%V 62
%N 3
%U http://geodesic.mathdoc.fr/item/RM_2007_62_3_a4/
%G en
%F RM_2007_62_3_a4
G. Falkovich. Conformal invariance in hydrodynamic turbulence. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 62 (2007) no. 3, pp. 497-510. http://geodesic.mathdoc.fr/item/RM_2007_62_3_a4/

[1] A. N. Kolmogorov, “Lokalnaya struktura turbulentnosti neszhimaemoi vyazkoi zhidkosti pri ochen bolshikh chislakh Reinoldsa”, Dokl. AN SSSR, 30:4 (1941), 9–13

[2] U. Frisch, Turbulence. The legacy of A. N. Kolmogorov, Cambridge Univ. Press, Cambridge, 1995 ; U. Frish, Turbulentnost. Nasledie Kolmogorova, FAZIS, M., 1998 | MR | Zbl

[3] G. Falkovich, K. R. Sreenivasan, “Lessons from hydrodynamic turbulence”, Phys. Today, 59:4 (2006), 43–49 | DOI

[4] G. Falkovich, K. Gawȩdzki, M. Vergassola, “Particles and fields in fluid turbulence”, Rev. Modern Phys., 73:4 (2001), 913–975 | DOI | MR

[5] B. I. Shraiman, E. D. Siggia, “Scalar turbulence”, Nature, 405 (2000), 639–646 | DOI

[6] R. H. Kraichnan, “Inertial ranges in two-dimensional turbulence”, Phys. Fluids, 10:7 (1967), 1417–1423 | DOI

[7] V. E. Zakharov, Volny v nelineinykh sredakh s dispersiei, Dis. $\dots$ kand. fiz.-matem. nauk, Institut yadernoi fiziki, Novosibirsk, 1967

[8] H. Kellay, W. Goldburg, “Two-dimensional turbulence: a review of some recent experiments”, Rep. Progr. Phys., 65:5 (2002), 845–894 | DOI

[9] S. Chen, R. E. Ecke, G. L. Eyink, M. Rivera, M. Wan, Z. Xiao, “Physical mechanism of the two-dimensional inverse energy cascade”, Phys. Rev. Lett., 96:8 (2006), 084502 | DOI

[10] G. Boffetta, A. Celani, M. Vergassola, “Inverse energy cascade in two-dimensional turbulence: Deviations from Gaussian behavior”, Phys. Rev. E, 61:1 (2000), R29–R32 | DOI | MR

[11] P. Tabeling, “Two-dimensional turbulence: a physicist approach”, Phys. Rep., 362:1 (2002), 1–62 | DOI | MR | Zbl

[12] A. Celani, M. Cencini, A. Mazzino, M. Vergassola, “Active and passive fields face to face”, New J. Phys., 6:72 (2004), 1–35 | DOI

[13] A. M. Polyakov, “The theory of turbulence in two dimensions”, Nuclear Phys. B, 396:2–3 (1993), 367–385 | DOI | MR

[14] A. A. Belavin, A. M. Polyakov, A. A. Zamolodchikov, “Infinite conformal symmetry in two-dimensional quantum field theory”, Nuclear Phys. B, 241:2 (1984), 333–380 | DOI | MR | Zbl

[15] G. Falkovich, A. Fouxon, “Anomalous scaling of a passive scalar in turbulence and equilibrium”, Phys. Rev. Lett., 94:21 (2005), 214502 | DOI

[16] D. Bernard, G. Boffetta, A. Celani, G. Falkovich, “Inverse turbulent cascades and conformally invariant curves”, Phys. Rev. Lett., 98:2 (2006), 024501 | DOI

[17] G. Lawler, O. Schramm, W. Werner, “Values of Brownian intersection exponents. I: Half-plane exponents”, Acta Math., 187:2 (2001), 237–273 | DOI | MR | Zbl

[18] G. Lawler, O. Schramm, W. Werner, “Values of Brownian intersection exponents. III: Two-sided exponents”, Ann. Inst. H. Poincaré Probab. Statist., 38:1 (2002), 109–123 | DOI | MR | Zbl

[19] G. Lawler, O. Schramm, W. Werner, “Conformal restriction: The chordal case”, J. Amer. Math. Soc., 16:4 (2003), 917–955 | DOI | MR | Zbl

[20] G. F. Lawler, Conformally invariant processes in the plane, Math. Surveys Monogr., 114, Amer. Math. Soc., Providence, RI, 2005 | MR | Zbl

[21] D. Bernard, G. Boffetta, A. Celani, G. Falkovich, “Conformal invariance in two-dimensional turbulence”, Nature Physics, 2:2 (2006), 124–128 | DOI

[22] I. M. Held, R. T. Pierrehumbert, S. T. Garner, K. L. Swanson, “Surface quasi-geostrophic dynamics”, J. Fluid Mech., 282 (1995), 1–20 | DOI | MR | Zbl

[23] R. T. Pierrehumbert, I. M. Held, K. L. Swanson, “Spectra of local and nonlocal two-dimensional turbulence”, Chaos Solitons Fractals, 4:6 (1994), 1111–1116 | DOI | Zbl

[24] V. Larichev, J. McWilliams, “Weakly decaying turbulence in an equivalent-barotropic fluid”, Phys. Fluids A, 3:5 (1991), 938–950 | DOI

[25] N. Schorghofer, “Energy spectra of steady two-dimensional turbulent flows”, Phys. Rev. E, 61:6 (2000), 6572–6577 | DOI

[26] K. S. Smith, G. Boccaletti, C. C. Henning, I. Marinov, C. Y. Tam, I. M. Held, G. K. Vallis, “Turbulent diffusion in the geostrophic inverse cascade”, J. Fluid Mech., 469 (2002), 13–48 | DOI | MR | Zbl

[27] K. Löwner, “Untersuchungen über schlichte konforme Abbildungen des Einheitskreises. I”, Math. Ann., 89:1–2 (1923), 103–121 | DOI | MR | Zbl

[28] O. Schramm, “Scaling limits of loop-erased random walks and uniform spanning trees”, Israel J. Math., 118 (2000), 221–288 | DOI | MR | Zbl

[29] J. Cardy, “SLE for theoretical physicists”, Ann. Physics, 318:1 (2005), 81–118 | DOI | MR | Zbl

[30] M. Bauer, D. Bernard, “2D growth processes: SLE and Loewner chains”, Phys. Rep., 432:3–4 (2006), 115–221 | DOI | MR

[31] H. Saleur, B. Duplantier, “Exact determination of the percolation hull exponent in two dimensions”, Phys. Rev. Lett., 58:22 (1987), 2325–2328 | DOI | MR

[32] V. Beffara, The dimension of the SLE curves, arXiv: math.PR/0211322 | MR

[33] B. Duplantier, “Conformally invariant fractals and potential theory”, Phys. Rev. Lett., 84:7 (2000), 1363–1367 | DOI | MR | Zbl

[34] O. Schramm, S. Sheffield, “Harmonic explorer and its convergence to $\SLE_4$”, Ann. Probab., 33:6 (2005), 2127–2148 | DOI | MR | Zbl

[35] A. Weinrib, “Long-correlated percolation”, Phys. Rev. B, 29:1 (1984), 387–395 | DOI | MR

[36] J. Cardy, R. Ziff, “Exact results for the universal area distribution of clusters in percolation, Ising and Potts models”, J. Statist. Phys., 110:1–2 (2003), 1–33 | DOI | MR | Zbl

[37] J. Cardy, “Linking numbers for self-avoiding walks and percolation: application to the spin quantum Hall transition”, Phys. Rev. Lett., 84:16 (2000), 3507–3510 | DOI | MR | Zbl

[38] D. Marshall, S. Rohde, Convergence of the Zipper algorithm for conformal mapping, arXiv: math/0605532

[39] P. Di Francesco, P. Mathieu, D. Sénéchal, Conformal field theory, Grad. Texts Contemp. Phys., Springer-Verlag, New York, 1997 | MR | Zbl

[40] E. Sezgin, Area-preserving diffeomorphisms, $w_\infty$ algebras and $w_\infty$ gravity, arXiv: hep-th/9202086

[41] V. I. Arnold, Matematicheskie metody klassicheskoi mekhaniki, 2-e izd., Nauka, M., 1979 ; V. I. Arnold, “Mathematical methods of classical mechanics”, Grad. Texts in Math., 60, Springer-Verlag, New York, 1989 | MR | Zbl | MR | Zbl

[42] V. I. Arnold, B. A. Khesin, Topological methods in hydrodynamics, Appl. Math. Sci., 125, Springer-Verlag, New York, 1998 | MR | Zbl

[43] B. Doyon, V. Riva, J. Cardy, “Identification of the stress-energy tensor through conformal restriction in SLE and related processes”, Comm. Math. Phys., 268:3 (2006), 687–716 | DOI | MR | Zbl

[44] M. Mineev-Weinstein, P. Wiegmann, A. Zabrodin, “Integrable structure of interface dynamics”, Phys. Rev. Lett., 84:22 (2000), 5106–5109 | DOI

[45] A. Zabrodin, Growth processes related to the dispersionless Lax equations, arXiv: math-ph/0609023