@article{RM_2007_62_3_a4,
author = {G. Falkovich},
title = {Conformal invariance in hydrodynamic turbulence},
journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
pages = {497--510},
year = {2007},
volume = {62},
number = {3},
language = {en},
url = {http://geodesic.mathdoc.fr/item/RM_2007_62_3_a4/}
}
G. Falkovich. Conformal invariance in hydrodynamic turbulence. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 62 (2007) no. 3, pp. 497-510. http://geodesic.mathdoc.fr/item/RM_2007_62_3_a4/
[1] A. N. Kolmogorov, “Lokalnaya struktura turbulentnosti neszhimaemoi vyazkoi zhidkosti pri ochen bolshikh chislakh Reinoldsa”, Dokl. AN SSSR, 30:4 (1941), 9–13
[2] U. Frisch, Turbulence. The legacy of A. N. Kolmogorov, Cambridge Univ. Press, Cambridge, 1995 ; U. Frish, Turbulentnost. Nasledie Kolmogorova, FAZIS, M., 1998 | MR | Zbl
[3] G. Falkovich, K. R. Sreenivasan, “Lessons from hydrodynamic turbulence”, Phys. Today, 59:4 (2006), 43–49 | DOI
[4] G. Falkovich, K. Gawȩdzki, M. Vergassola, “Particles and fields in fluid turbulence”, Rev. Modern Phys., 73:4 (2001), 913–975 | DOI | MR
[5] B. I. Shraiman, E. D. Siggia, “Scalar turbulence”, Nature, 405 (2000), 639–646 | DOI
[6] R. H. Kraichnan, “Inertial ranges in two-dimensional turbulence”, Phys. Fluids, 10:7 (1967), 1417–1423 | DOI
[7] V. E. Zakharov, Volny v nelineinykh sredakh s dispersiei, Dis. $\dots$ kand. fiz.-matem. nauk, Institut yadernoi fiziki, Novosibirsk, 1967
[8] H. Kellay, W. Goldburg, “Two-dimensional turbulence: a review of some recent experiments”, Rep. Progr. Phys., 65:5 (2002), 845–894 | DOI
[9] S. Chen, R. E. Ecke, G. L. Eyink, M. Rivera, M. Wan, Z. Xiao, “Physical mechanism of the two-dimensional inverse energy cascade”, Phys. Rev. Lett., 96:8 (2006), 084502 | DOI
[10] G. Boffetta, A. Celani, M. Vergassola, “Inverse energy cascade in two-dimensional turbulence: Deviations from Gaussian behavior”, Phys. Rev. E, 61:1 (2000), R29–R32 | DOI | MR
[11] P. Tabeling, “Two-dimensional turbulence: a physicist approach”, Phys. Rep., 362:1 (2002), 1–62 | DOI | MR | Zbl
[12] A. Celani, M. Cencini, A. Mazzino, M. Vergassola, “Active and passive fields face to face”, New J. Phys., 6:72 (2004), 1–35 | DOI
[13] A. M. Polyakov, “The theory of turbulence in two dimensions”, Nuclear Phys. B, 396:2–3 (1993), 367–385 | DOI | MR
[14] A. A. Belavin, A. M. Polyakov, A. A. Zamolodchikov, “Infinite conformal symmetry in two-dimensional quantum field theory”, Nuclear Phys. B, 241:2 (1984), 333–380 | DOI | MR | Zbl
[15] G. Falkovich, A. Fouxon, “Anomalous scaling of a passive scalar in turbulence and equilibrium”, Phys. Rev. Lett., 94:21 (2005), 214502 | DOI
[16] D. Bernard, G. Boffetta, A. Celani, G. Falkovich, “Inverse turbulent cascades and conformally invariant curves”, Phys. Rev. Lett., 98:2 (2006), 024501 | DOI
[17] G. Lawler, O. Schramm, W. Werner, “Values of Brownian intersection exponents. I: Half-plane exponents”, Acta Math., 187:2 (2001), 237–273 | DOI | MR | Zbl
[18] G. Lawler, O. Schramm, W. Werner, “Values of Brownian intersection exponents. III: Two-sided exponents”, Ann. Inst. H. Poincaré Probab. Statist., 38:1 (2002), 109–123 | DOI | MR | Zbl
[19] G. Lawler, O. Schramm, W. Werner, “Conformal restriction: The chordal case”, J. Amer. Math. Soc., 16:4 (2003), 917–955 | DOI | MR | Zbl
[20] G. F. Lawler, Conformally invariant processes in the plane, Math. Surveys Monogr., 114, Amer. Math. Soc., Providence, RI, 2005 | MR | Zbl
[21] D. Bernard, G. Boffetta, A. Celani, G. Falkovich, “Conformal invariance in two-dimensional turbulence”, Nature Physics, 2:2 (2006), 124–128 | DOI
[22] I. M. Held, R. T. Pierrehumbert, S. T. Garner, K. L. Swanson, “Surface quasi-geostrophic dynamics”, J. Fluid Mech., 282 (1995), 1–20 | DOI | MR | Zbl
[23] R. T. Pierrehumbert, I. M. Held, K. L. Swanson, “Spectra of local and nonlocal two-dimensional turbulence”, Chaos Solitons Fractals, 4:6 (1994), 1111–1116 | DOI | Zbl
[24] V. Larichev, J. McWilliams, “Weakly decaying turbulence in an equivalent-barotropic fluid”, Phys. Fluids A, 3:5 (1991), 938–950 | DOI
[25] N. Schorghofer, “Energy spectra of steady two-dimensional turbulent flows”, Phys. Rev. E, 61:6 (2000), 6572–6577 | DOI
[26] K. S. Smith, G. Boccaletti, C. C. Henning, I. Marinov, C. Y. Tam, I. M. Held, G. K. Vallis, “Turbulent diffusion in the geostrophic inverse cascade”, J. Fluid Mech., 469 (2002), 13–48 | DOI | MR | Zbl
[27] K. Löwner, “Untersuchungen über schlichte konforme Abbildungen des Einheitskreises. I”, Math. Ann., 89:1–2 (1923), 103–121 | DOI | MR | Zbl
[28] O. Schramm, “Scaling limits of loop-erased random walks and uniform spanning trees”, Israel J. Math., 118 (2000), 221–288 | DOI | MR | Zbl
[29] J. Cardy, “SLE for theoretical physicists”, Ann. Physics, 318:1 (2005), 81–118 | DOI | MR | Zbl
[30] M. Bauer, D. Bernard, “2D growth processes: SLE and Loewner chains”, Phys. Rep., 432:3–4 (2006), 115–221 | DOI | MR
[31] H. Saleur, B. Duplantier, “Exact determination of the percolation hull exponent in two dimensions”, Phys. Rev. Lett., 58:22 (1987), 2325–2328 | DOI | MR
[32] V. Beffara, The dimension of the SLE curves, arXiv: math.PR/0211322 | MR
[33] B. Duplantier, “Conformally invariant fractals and potential theory”, Phys. Rev. Lett., 84:7 (2000), 1363–1367 | DOI | MR | Zbl
[34] O. Schramm, S. Sheffield, “Harmonic explorer and its convergence to $\SLE_4$”, Ann. Probab., 33:6 (2005), 2127–2148 | DOI | MR | Zbl
[35] A. Weinrib, “Long-correlated percolation”, Phys. Rev. B, 29:1 (1984), 387–395 | DOI | MR
[36] J. Cardy, R. Ziff, “Exact results for the universal area distribution of clusters in percolation, Ising and Potts models”, J. Statist. Phys., 110:1–2 (2003), 1–33 | DOI | MR | Zbl
[37] J. Cardy, “Linking numbers for self-avoiding walks and percolation: application to the spin quantum Hall transition”, Phys. Rev. Lett., 84:16 (2000), 3507–3510 | DOI | MR | Zbl
[38] D. Marshall, S. Rohde, Convergence of the Zipper algorithm for conformal mapping, arXiv: math/0605532
[39] P. Di Francesco, P. Mathieu, D. Sénéchal, Conformal field theory, Grad. Texts Contemp. Phys., Springer-Verlag, New York, 1997 | MR | Zbl
[40] E. Sezgin, Area-preserving diffeomorphisms, $w_\infty$ algebras and $w_\infty$ gravity, arXiv: hep-th/9202086
[41] V. I. Arnold, Matematicheskie metody klassicheskoi mekhaniki, 2-e izd., Nauka, M., 1979 ; V. I. Arnold, “Mathematical methods of classical mechanics”, Grad. Texts in Math., 60, Springer-Verlag, New York, 1989 | MR | Zbl | MR | Zbl
[42] V. I. Arnold, B. A. Khesin, Topological methods in hydrodynamics, Appl. Math. Sci., 125, Springer-Verlag, New York, 1998 | MR | Zbl
[43] B. Doyon, V. Riva, J. Cardy, “Identification of the stress-energy tensor through conformal restriction in SLE and related processes”, Comm. Math. Phys., 268:3 (2006), 687–716 | DOI | MR | Zbl
[44] M. Mineev-Weinstein, P. Wiegmann, A. Zabrodin, “Integrable structure of interface dynamics”, Phys. Rev. Lett., 84:22 (2000), 5106–5109 | DOI
[45] A. Zabrodin, Growth processes related to the dispersionless Lax equations, arXiv: math-ph/0609023