Axisymmetric incompressible flows with bounded vorticity
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 62 (2007) no. 3, pp. 475-496

Voir la notice de l'article provenant de la source Math-Net.Ru

This paper is devoted to the proof of global existence and uniqueness results for the three-dimensional incompressible Euler equations with a particular geometrical structure. The focus is on so-called axisymmetric solutions without swirl and on helicoidal solutions. The aim is to prescribe regularity conditions on the vorticity as close as possible to those formulated in the two-dimensional setting by V. I. Yudovich.
@article{RM_2007_62_3_a3,
     author = {R. Danchin},
     title = {Axisymmetric incompressible flows with bounded vorticity},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {475--496},
     publisher = {mathdoc},
     volume = {62},
     number = {3},
     year = {2007},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/RM_2007_62_3_a3/}
}
TY  - JOUR
AU  - R. Danchin
TI  - Axisymmetric incompressible flows with bounded vorticity
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2007
SP  - 475
EP  - 496
VL  - 62
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/RM_2007_62_3_a3/
LA  - en
ID  - RM_2007_62_3_a3
ER  - 
%0 Journal Article
%A R. Danchin
%T Axisymmetric incompressible flows with bounded vorticity
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2007
%P 475-496
%V 62
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/RM_2007_62_3_a3/
%G en
%F RM_2007_62_3_a3
R. Danchin. Axisymmetric incompressible flows with bounded vorticity. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 62 (2007) no. 3, pp. 475-496. http://geodesic.mathdoc.fr/item/RM_2007_62_3_a3/