Axisymmetric incompressible flows with bounded vorticity
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 62 (2007) no. 3, pp. 475-496 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

This paper is devoted to the proof of global existence and uniqueness results for the three-dimensional incompressible Euler equations with a particular geometrical structure. The focus is on so-called axisymmetric solutions without swirl and on helicoidal solutions. The aim is to prescribe regularity conditions on the vorticity as close as possible to those formulated in the two-dimensional setting by V. I. Yudovich.
@article{RM_2007_62_3_a3,
     author = {R. Danchin},
     title = {Axisymmetric incompressible flows with bounded vorticity},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {475--496},
     year = {2007},
     volume = {62},
     number = {3},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/RM_2007_62_3_a3/}
}
TY  - JOUR
AU  - R. Danchin
TI  - Axisymmetric incompressible flows with bounded vorticity
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2007
SP  - 475
EP  - 496
VL  - 62
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/RM_2007_62_3_a3/
LA  - en
ID  - RM_2007_62_3_a3
ER  - 
%0 Journal Article
%A R. Danchin
%T Axisymmetric incompressible flows with bounded vorticity
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2007
%P 475-496
%V 62
%N 3
%U http://geodesic.mathdoc.fr/item/RM_2007_62_3_a3/
%G en
%F RM_2007_62_3_a3
R. Danchin. Axisymmetric incompressible flows with bounded vorticity. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 62 (2007) no. 3, pp. 475-496. http://geodesic.mathdoc.fr/item/RM_2007_62_3_a3/

[1] L. Lichtenstein, “Über einige Existenzprobleme der Hydrodynamik”, Math. Z., 32:1 (1930), 608–640 | DOI | MR | Zbl

[2] W. Wolibner, “Un theorème sur l'existence du mouvement plan d'un fluide parfait, homogène, incompressible, pendant un temps infiniment long”, Math. Z., 37:1 (1933), 698–726 | DOI | MR | Zbl

[3] J.-Y. Chemin, “Fluides parfaits incompressibles”, Astérisque, 230, 1995 | MR | Zbl

[4] V. I. Yudovich, “Nestatsionarnye techeniya v idealnoi neszhimaemoi zhidkosti”, Zhurn. vychisl. matem. i matem. fiz., 3 (1963), 1032–1066 | MR | Zbl

[5] V. I. Yudovich, “Uniqueness theorem for the basic nonstationary problem in the dynamics of an ideal incompressible fluid”, Math. Res. Lett., 2:1 (1995), 27–38 | MR | Zbl

[6] M. Vishik, “Incompressible flows of an ideal fluid with vorticity in borderline spaces of Besov type”, Ann. Sci. École Norm. Sup. (4), 32:6 (1999), 769–812 | DOI | MR | Zbl

[7] D. Serre, “La croissance de la vorticité dans les écoulements parfaits incompressibles”, C. R. Acad. Sci. Paris Sér. I Math., 328:6 (1999), 549–552 | DOI | MR | Zbl

[8] A. Dutrifoy, “Existence globale en temps de solutions hélicoïdales des équations d'{E}uler”, C. R. Acad. Sci. Paris Sér. I Math., 329:7 (1999), 653–656 | DOI | MR | Zbl

[9] V. I. Yudovich, M. R. Ukhovskii, “Osesimmetrichnye techeniya idealnoi i vyazkoi zhidkosti, zapolnyayuschei vse prostranstvo”, PMM, 32:1 (1968), 59–69 | MR | Zbl

[10] J. Ben Ameur, R. Danchin, “Limite non visqueuse pour les fluides incompressibles axisymétriques”, Nonlinear partial differential equations and their applications. Collège de France seminar, vol. XIV (Paris, France, 1997–1998), Stud. Math. Appl., 31, North-Holland, Amsterdam, 2002, 29–55 | MR | Zbl

[11] T. Shirota, T. Yanagisawa, “Note on global existence for axially symmetric solutions of the Euler system”, Proc. Japan Acad. Ser. A. Math. Sci., 70:10 (1994), 299–304 | DOI | MR | Zbl

[12] R. A. Hunt, “On $L(p,q)$ spaces”, Enseignement Math. (2), 12 (1966), 249–276 | MR | Zbl

[13] D. Gilbarg, N. S. Trudinger, Elliptic partial differential equations of second order, Classics Math., Springer-Verlag, Berlin, 2001 | MR | Zbl

[14] A. Dutrifoy, “Precise regularity results for the Euler equations”, J. Math. Anal. Appl., 282:1 (2003), 177–200 | DOI | MR | Zbl

[15] J.-M. Bony, “Calcul symbolique et propagation des singularités pour les équations aux dérivées partielles non linéaires”, Ann. Sci. École Norm. Sup. (4), 14:2 (1981), 209–246 | MR | Zbl

[16] R. Danchin, “Évolution d'une singularité de type cusp dans une poche de tourbillon”, Rev. Mat. Iberoamericana, 16:2 (2000), 281–329 | MR | Zbl

[17] A. Mahalov, E. S. Titi, S. Leibovich, “Invariant helical subspaces for the Navier–Stokes equations”, Arch. Rational Mech. Anal., 112:3 (1990), 193–222 | DOI | MR | Zbl

[18] J. T. Beale, T. Kato, A. Majda, “Remarks on the breakdown of smooth solutions for the 3-D Euler equations”, Comm. Math. Phys., 94:1 (1984), 61–66 | DOI | MR | Zbl

[19] Y. Zhou, “Local well-posedness for the incompressible Euler equations in the critical Besov spaces”, Ann. Inst. Fourier (Grenoble), 54:3 (2004), 773–786 | MR | Zbl

[20] M. Vishik, “Hydrodynamics in Besov spaces”, Arch. Ration. Mech. Anal., 145:3 (1998), 197–214 | DOI | MR | Zbl