@article{RM_2007_62_3_a2,
author = {W. Craig and C. E. Wayne},
title = {Mathematical aspects of surface water waves},
journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
pages = {453--473},
year = {2007},
volume = {62},
number = {3},
language = {en},
url = {http://geodesic.mathdoc.fr/item/RM_2007_62_3_a2/}
}
W. Craig; C. E. Wayne. Mathematical aspects of surface water waves. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 62 (2007) no. 3, pp. 453-473. http://geodesic.mathdoc.fr/item/RM_2007_62_3_a2/
[1] V. E. Zakharov, “Stability of periodic waves of finite amplitude on the surface of a deep fluid”, J. Appl. Mech. Tech. Phys., 9:2 (1968), 190–194 | DOI
[2] W. Craig, C. Sulem, “Numerical simulation of gravity waves”, J. Comput. Phys., 108:1 (1993), 73–83 | DOI | MR | Zbl
[3] J. C. Luke, “A variational principle for a fluid with a free surface”, J. Fluid Mech., 27 (1967), 395–397 | DOI | MR | Zbl
[4] L. V. Ovsiannikov, “Non local Cauchy problems in fluid dynamics”, Actes du congrès international des mathématiciens, vol. 3 (Nice, 1970), Gauthier-Villars, Paris, 1971, 137–142 | MR | Zbl
[5] V. I. Nalimov, “Zadacha Koshi–Puassona”, Dinamika sploshnoi sredy, 18 (1974), 104–210 | MR
[6] T. Kano, T. Nishida, “Sur les ondes de surface de l'eau avec une justification mathématique des équations des ondes en eau peu profonde”, J. Math. Kyoto Univ., 19:2 (1979), 335–370 | MR | Zbl
[7] M. Shinbrot, “The initial value problem for surface waves under gravity. I. The simplest case”, Indiana Univ. Math. J., 25:3 (1976), 281–300 | DOI | MR | Zbl
[8] J. Reeder, M. Shinbrot, “The initial value problem for surface waves under gravity. II. The simplest $3$-dimensional case”, Indiana Univ. Math. J., 25:11 (1976), 1049–1071 | DOI | MR | Zbl
[9] J. Reeder, M. Shinbrot, “The initial value problem for surface waves under gravity. III. Uniformly analytic initial domains”, J. Math. Anal. Appl., 67:2 (1979), 340–391 | DOI | MR | Zbl
[10] C. Sulem, P.-L. Sulem, C. Bardos, U. Frisch, “Finite time analyticity for the two- and three-dimensional Kelvin–Helmholtz instability”, Comm. Math. Phys., 80:4 (1981), 485–516 | DOI | MR | Zbl
[11] H. Yosihara, “Gravity waves on the free surface of an incompressible perfect fluid of finite depth”, Publ. Res. Inst. Math. Sci., 18:1 (1982), 49–96 | DOI | MR | Zbl
[12] H. Yosihara, “Capillary-gravity waves for an incompressible ideal fluid”, J. Math. Kyoto Univ., 23:4 (1983), 649–694 | MR | Zbl
[13] W. Craig, “An existence theory for water waves and the Boussinesq and Korteweg–de Vries scaling limits”, Comm. Partial Differential Equations, 10:8 (1985), 787–1003 | DOI | MR | Zbl
[14] M. Shinbrot, C. E. Wayne, “The long-wave limit for the water wave problem. I. The case of zero surface tension”, Comm. Pure Appl. Math., 53:12 (2000), 1475–1535 | 3.0.CO;2-V class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI | MR | Zbl
[15] M. Shinbrot, C. E. Wayne, “The rigorous approximation of long-wavelength capillary-gravity waves”, Arch. Ration. Mech. Anal., 162:3 (2002), 247–285 | DOI | MR | Zbl
[16] S. Wu, “Well-posedness in Sobolev spaces of the full water wave problem in 2-D”, Invent. Math., 130:1 (1997), 39–72 | DOI | MR | Zbl
[17] S. Wu, “Well-posedness in Sobolev spaces of the full water wave problem in 3-D”, J. Amer. Math. Soc., 12:2 (1999), 445–495 | DOI | MR | Zbl
[18] D. Lannes, “Well-posedness of the water-waves equations”, J. Amer. Math. Soc., 18:3 (2005), 605–654 | DOI | MR | Zbl
[19] T. Levi-Civita, “Détermination rigoureuse des ondes permanentes d'ampleur finie”, Math. Ann., 93:1 (1925), 264–314 | DOI | MR | Zbl
[20] A. I. Nekrasov, The exact theory of steady state waves on the surface of a heavy liquid, MRC Technical Report No 813, Univ. of Wisconsin, Madison, 1967 | MR
[21] D. Struik, “Détermination rigoureuse des ondes irrotationnelles périodiques dans un canal à profondeur finie”, Math. Ann., 95:1 (1926), 595–634 | DOI | MR | Zbl
[22] M. A. Lavrentev, “K teorii dlinnykh voln”, Dokl. AN SSSR, 41:7 (1943), 289–291
[23] K. O. Friedrichs, D. H. Hyers, “The existence of solitary waves”, Comm. Pure Appl. Math., 7:3 (1954), 517–550 | DOI | MR | Zbl
[24] D. Christodoulou, H. Lindblad, “On the motion of the free surface of a liquid”, Comm. Pure Appl. Math., 53:12 (2000), 1536–1602 | 3.0.CO;2-Q class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI | MR | Zbl
[25] H. Lindblad, “Well-posedness for the motion of an incompressible liquid with free surface boundary”, Ann. of Math. (2), 162:1 (2005), 109–194 | DOI | MR | Zbl
[26] D. Ebin, “The equations of motion of a perfect fluid with free boundary are not well posed”, Comm. Partial Differential Equations, 12:10 (1987), 1175–1201 | DOI | MR | Zbl
[27] T. B. Benjamin, P. J. Olver, “Hamiltonian structure, symmetries and conservation laws for water waves”, J. Fluid Mech., 125 (1982), 137–185 | DOI | MR | Zbl
[28] T. Kano, T. Nishida, “Water waves and Friedrichs expansion”, Recent topics in nonlinear PDE (Hiroshima, 1983), North-Holland Math. Stud., 98, North-Holland, Amsterdam, 1984, 39–57 | MR | Zbl
[29] T. Kano, T. Nishida, “A mathematical justification for Korteweg–de Vries equation and Boussinesq equation of water surface waves”, Osaka J. Math., 23:2 (1986), 389–413 | MR | Zbl
[30] J. D. Wright, “Corrections to the KdV approximation for water waves”, SIAM J. Math. Anal., 37:4 (2005), 1161–1206 | DOI | MR | Zbl
[31] J. Bona, Th. Colin, D. Lannes, “Long wave approximations for water waves”, Arch. Ration. Mech. Anal., 178:3 (2005), 373–410 | DOI | MR | Zbl
[32] W. Craig, C. Sulem, P.-L. Sulem, “Nonlinear modulation of gravity waves: a rigorous approach”, Nonlinearity, 5:2 (1992), 497–522 | DOI | MR | Zbl
[33] W. Craig, U. Schanz, C. Sulem, “The modulational regime of three-dimensional water waves and the Davey–Stewartson system”, Ann. Inst. H. Poincaré Anal. Non Linéaire, 14:5 (1997), 615–667 | DOI | MR | Zbl
[34] W. Craig, M. Groves, “Hamiltonian long-wave approximations to the water-wave problem”, Wave Motion, 19:4 (1994), 367–389 | DOI | MR | Zbl
[35] W. Craig, P. Guyenne, D. Nicholls, C. Sulem, “Hamiltonian long-wave expansions for water waves over a rough bottom”, Proc. R. Soc. Lond. Ser. A. Math. Phys. Eng. Sci., 461:2055 (2005), 839–873 | DOI | MR | Zbl
[36] E. Zeidler, “Existenzbeweis für cnoidal waves unter Berücksichtigung der Oberflächenspannung”, Arch. Rational Mech. Anal., 41:2 (1971), 81–107 | DOI | MR | Zbl
[37] C. J. Amick, J. F. Toland, “On solitary water-waves of finite amplitude”, Arch. Ration. Mech. Anal., 76:1 (1981), 9–95 | DOI | MR | Zbl
[38] C. J. Amick, L. E. Fraenkel, J. F. Toland, “On the Stokes conjecture for the wave of extreme form”, Acta Math., 148:1 (1982), 193–214 | DOI | MR | Zbl
[39] K. Kirchgässner, “Nonlinear wave motion and homoclinic bifurcation”, Theoretical and applied mechanics (Lyngby, 1984), North-Holland, Amsterdam, 1985, 219–231 | MR | Zbl
[40] A. Mielke, Hamiltonian and Lagrangian flows on center manifolds. With applications to elliptic variational problems, Lecture Notes in Math., 1489, Springer-Verlag, Berlin, 1991 | MR | Zbl
[41] J. Reeder, M. Shinbrot, “Three-dimensional, nonlinear wave interaction in water of constant depth”, Nonlinear Anal., 5:3 (1981), 303–323 | DOI | MR | Zbl
[42] W. Craig, D. Nicholls, “Travelling two and three dimensional capillary gravity water waves”, SIAM J. Math. Anal., 32:2 (2000), 323–359 | DOI | MR | Zbl
[43] P. I. Plotnikov, J. F. Toland, “Nash–Moser theory for standing water waves”, Arch. Ration. Mech. Anal., 159:1 (2001), 1–83 | DOI | MR | Zbl
[44] G. Iooss, P. I. Plotnikov, J. F. Toland, “Standing waves on an infinitely deep perfect fluid under gravity”, Arch. Ration. Mech. Anal., 177:3 (2005), 367–478 | DOI | MR | Zbl
[45] W. Craig, P. Sternberg, “Symmetry of solitary waves”, Comm. Partial Differential Equations, 13:5 (1988), 603–633 | DOI | MR | Zbl
[46] W. Craig, “Non-existence of solitary water waves in three dimensions”, R. Soc. Lond. Philos. Trans. Ser. A. Math. Phys. Eng. Sci., 360:1799 (2002), 2127–2135 | DOI | MR | Zbl
[47] M. Groves, S.-M. Sun, “Fully localised solitary-wave solutions of the three-dimensional gravity-capillary water-wave problem”, Arch. Ration. Mech. Anal (to appear)
[48] P. I. Plotnikov, “Needinstvennost reshenii zadachi ob uedinennykh volnakh i bifurkatsii kriticheskikh tochek gladkikh funktsionalov”, Izv. RAN. Ser. matem., 55:2 (1991), 339–366 ; P. I. Plotnikov, “Nonuniqueness of solutions of a problem on solitary waves, and bifurcations of critical points of smooth functionals”, Math. USSR-Izv., 38:2 (1992), 333–357 | MR | Zbl | DOI
[49] W. Craig, P. Guyenne, J. Hammack, D. Henderson, C. Sulem, “Solitary water wave interactons”, Phys. Fluids, 18:5 (2006), 057106 | DOI | MR | Zbl
[50] K. Hasselmann, “On the non-linear energy transfer in a gravity-wave spectrum. I. General theory”, J. Fluid Mech., 12 (1962), 481–500 | DOI | MR | Zbl
[51] V. E. Zakharov, V. S. Lvov, “Statisticheskoe opisanie nelineinykh volnovykh polei”, Izv. vuzov. Ser. radiofiz., 18:10 (1975), 1470–1487 | MR
[52] V. E. Zakharov, V. S. L'vov, G. Falkovich, Kolmogorov spectra of turbulence. I. Wave turbulence, Springer-Verlag, Berlin–New York, 1992 | Zbl
[53] P. Gérard, P. Markowich, N. Mauser, F. Poupaud, “Homogenization limits and Wigner transforms”, Comm. Pure Appl. Math., 50:4 (1997), 323–379 | 3.0.CO;2-C class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI | MR | Zbl
[54] M. A. Donelan, J. Hamilton, W. H. Hui, “Directional spectra of wind-generated waves”, R. Soc. Lond. Philos. Trans. Ser. A. Math. Phys. Eng. Sci., 315:1534 (1985), 509–562 | DOI