Mathematical aspects of surface water waves
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 62 (2007) no. 3, pp. 453-473 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The theory of the motion of a free surface over a body of water is a fascinating subject, with a long history in both applied and pure mathematical research, and with a continuing relevance to the enterprises of mankind having to do with the sea. Despite the recent advances in the field (some of which we will hear about during this Workshop on Mathematical Hydrodynamics at the Steklov Institute), and the current focus of the mathematical community on the topic, many fundamental mathematical questions remain. These have to do with the evolution of surface water waves, their approximation by model equations and by computer simulations, the detailed dynamics of wave interactions, such as would produce rogue waves in an open ocean, and the theory (partially probabilistic) of approximating wave fields over large regions by averaged ‘macroscopic’ quantities which satisfy essentially kinetic equations of motion. In this note we would like to point out open problems and some of the directions of current research in the field. We believe that the introduction of new analytical techniques and novel points of view will play an important rôle in the future development of the area.
@article{RM_2007_62_3_a2,
     author = {W. Craig and C. E. Wayne},
     title = {Mathematical aspects of surface water waves},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {453--473},
     year = {2007},
     volume = {62},
     number = {3},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/RM_2007_62_3_a2/}
}
TY  - JOUR
AU  - W. Craig
AU  - C. E. Wayne
TI  - Mathematical aspects of surface water waves
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2007
SP  - 453
EP  - 473
VL  - 62
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/RM_2007_62_3_a2/
LA  - en
ID  - RM_2007_62_3_a2
ER  - 
%0 Journal Article
%A W. Craig
%A C. E. Wayne
%T Mathematical aspects of surface water waves
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2007
%P 453-473
%V 62
%N 3
%U http://geodesic.mathdoc.fr/item/RM_2007_62_3_a2/
%G en
%F RM_2007_62_3_a2
W. Craig; C. E. Wayne. Mathematical aspects of surface water waves. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 62 (2007) no. 3, pp. 453-473. http://geodesic.mathdoc.fr/item/RM_2007_62_3_a2/

[1] V. E. Zakharov, “Stability of periodic waves of finite amplitude on the surface of a deep fluid”, J. Appl. Mech. Tech. Phys., 9:2 (1968), 190–194 | DOI

[2] W. Craig, C. Sulem, “Numerical simulation of gravity waves”, J. Comput. Phys., 108:1 (1993), 73–83 | DOI | MR | Zbl

[3] J. C. Luke, “A variational principle for a fluid with a free surface”, J. Fluid Mech., 27 (1967), 395–397 | DOI | MR | Zbl

[4] L. V. Ovsiannikov, “Non local Cauchy problems in fluid dynamics”, Actes du congrès international des mathématiciens, vol. 3 (Nice, 1970), Gauthier-Villars, Paris, 1971, 137–142 | MR | Zbl

[5] V. I. Nalimov, “Zadacha Koshi–Puassona”, Dinamika sploshnoi sredy, 18 (1974), 104–210 | MR

[6] T. Kano, T. Nishida, “Sur les ondes de surface de l'eau avec une justification mathématique des équations des ondes en eau peu profonde”, J. Math. Kyoto Univ., 19:2 (1979), 335–370 | MR | Zbl

[7] M. Shinbrot, “The initial value problem for surface waves under gravity. I. The simplest case”, Indiana Univ. Math. J., 25:3 (1976), 281–300 | DOI | MR | Zbl

[8] J. Reeder, M. Shinbrot, “The initial value problem for surface waves under gravity. II. The simplest $3$-dimensional case”, Indiana Univ. Math. J., 25:11 (1976), 1049–1071 | DOI | MR | Zbl

[9] J. Reeder, M. Shinbrot, “The initial value problem for surface waves under gravity. III. Uniformly analytic initial domains”, J. Math. Anal. Appl., 67:2 (1979), 340–391 | DOI | MR | Zbl

[10] C. Sulem, P.-L. Sulem, C. Bardos, U. Frisch, “Finite time analyticity for the two- and three-dimensional Kelvin–Helmholtz instability”, Comm. Math. Phys., 80:4 (1981), 485–516 | DOI | MR | Zbl

[11] H. Yosihara, “Gravity waves on the free surface of an incompressible perfect fluid of finite depth”, Publ. Res. Inst. Math. Sci., 18:1 (1982), 49–96 | DOI | MR | Zbl

[12] H. Yosihara, “Capillary-gravity waves for an incompressible ideal fluid”, J. Math. Kyoto Univ., 23:4 (1983), 649–694 | MR | Zbl

[13] W. Craig, “An existence theory for water waves and the Boussinesq and Korteweg–de Vries scaling limits”, Comm. Partial Differential Equations, 10:8 (1985), 787–1003 | DOI | MR | Zbl

[14] M. Shinbrot, C. E. Wayne, “The long-wave limit for the water wave problem. I. The case of zero surface tension”, Comm. Pure Appl. Math., 53:12 (2000), 1475–1535 | 3.0.CO;2-V class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI | MR | Zbl

[15] M. Shinbrot, C. E. Wayne, “The rigorous approximation of long-wavelength capillary-gravity waves”, Arch. Ration. Mech. Anal., 162:3 (2002), 247–285 | DOI | MR | Zbl

[16] S. Wu, “Well-posedness in Sobolev spaces of the full water wave problem in 2-D”, Invent. Math., 130:1 (1997), 39–72 | DOI | MR | Zbl

[17] S. Wu, “Well-posedness in Sobolev spaces of the full water wave problem in 3-D”, J. Amer. Math. Soc., 12:2 (1999), 445–495 | DOI | MR | Zbl

[18] D. Lannes, “Well-posedness of the water-waves equations”, J. Amer. Math. Soc., 18:3 (2005), 605–654 | DOI | MR | Zbl

[19] T. Levi-Civita, “Détermination rigoureuse des ondes permanentes d'ampleur finie”, Math. Ann., 93:1 (1925), 264–314 | DOI | MR | Zbl

[20] A. I. Nekrasov, The exact theory of steady state waves on the surface of a heavy liquid, MRC Technical Report No 813, Univ. of Wisconsin, Madison, 1967 | MR

[21] D. Struik, “Détermination rigoureuse des ondes irrotationnelles périodiques dans un canal à profondeur finie”, Math. Ann., 95:1 (1926), 595–634 | DOI | MR | Zbl

[22] M. A. Lavrentev, “K teorii dlinnykh voln”, Dokl. AN SSSR, 41:7 (1943), 289–291

[23] K. O. Friedrichs, D. H. Hyers, “The existence of solitary waves”, Comm. Pure Appl. Math., 7:3 (1954), 517–550 | DOI | MR | Zbl

[24] D. Christodoulou, H. Lindblad, “On the motion of the free surface of a liquid”, Comm. Pure Appl. Math., 53:12 (2000), 1536–1602 | 3.0.CO;2-Q class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI | MR | Zbl

[25] H. Lindblad, “Well-posedness for the motion of an incompressible liquid with free surface boundary”, Ann. of Math. (2), 162:1 (2005), 109–194 | DOI | MR | Zbl

[26] D. Ebin, “The equations of motion of a perfect fluid with free boundary are not well posed”, Comm. Partial Differential Equations, 12:10 (1987), 1175–1201 | DOI | MR | Zbl

[27] T. B. Benjamin, P. J. Olver, “Hamiltonian structure, symmetries and conservation laws for water waves”, J. Fluid Mech., 125 (1982), 137–185 | DOI | MR | Zbl

[28] T. Kano, T. Nishida, “Water waves and Friedrichs expansion”, Recent topics in nonlinear PDE (Hiroshima, 1983), North-Holland Math. Stud., 98, North-Holland, Amsterdam, 1984, 39–57 | MR | Zbl

[29] T. Kano, T. Nishida, “A mathematical justification for Korteweg–de Vries equation and Boussinesq equation of water surface waves”, Osaka J. Math., 23:2 (1986), 389–413 | MR | Zbl

[30] J. D. Wright, “Corrections to the KdV approximation for water waves”, SIAM J. Math. Anal., 37:4 (2005), 1161–1206 | DOI | MR | Zbl

[31] J. Bona, Th. Colin, D. Lannes, “Long wave approximations for water waves”, Arch. Ration. Mech. Anal., 178:3 (2005), 373–410 | DOI | MR | Zbl

[32] W. Craig, C. Sulem, P.-L. Sulem, “Nonlinear modulation of gravity waves: a rigorous approach”, Nonlinearity, 5:2 (1992), 497–522 | DOI | MR | Zbl

[33] W. Craig, U. Schanz, C. Sulem, “The modulational regime of three-dimensional water waves and the Davey–Stewartson system”, Ann. Inst. H. Poincaré Anal. Non Linéaire, 14:5 (1997), 615–667 | DOI | MR | Zbl

[34] W. Craig, M. Groves, “Hamiltonian long-wave approximations to the water-wave problem”, Wave Motion, 19:4 (1994), 367–389 | DOI | MR | Zbl

[35] W. Craig, P. Guyenne, D. Nicholls, C. Sulem, “Hamiltonian long-wave expansions for water waves over a rough bottom”, Proc. R. Soc. Lond. Ser. A. Math. Phys. Eng. Sci., 461:2055 (2005), 839–873 | DOI | MR | Zbl

[36] E. Zeidler, “Existenzbeweis für cnoidal waves unter Berücksichtigung der Oberflächenspannung”, Arch. Rational Mech. Anal., 41:2 (1971), 81–107 | DOI | MR | Zbl

[37] C. J. Amick, J. F. Toland, “On solitary water-waves of finite amplitude”, Arch. Ration. Mech. Anal., 76:1 (1981), 9–95 | DOI | MR | Zbl

[38] C. J. Amick, L. E. Fraenkel, J. F. Toland, “On the Stokes conjecture for the wave of extreme form”, Acta Math., 148:1 (1982), 193–214 | DOI | MR | Zbl

[39] K. Kirchgässner, “Nonlinear wave motion and homoclinic bifurcation”, Theoretical and applied mechanics (Lyngby, 1984), North-Holland, Amsterdam, 1985, 219–231 | MR | Zbl

[40] A. Mielke, Hamiltonian and Lagrangian flows on center manifolds. With applications to elliptic variational problems, Lecture Notes in Math., 1489, Springer-Verlag, Berlin, 1991 | MR | Zbl

[41] J. Reeder, M. Shinbrot, “Three-dimensional, nonlinear wave interaction in water of constant depth”, Nonlinear Anal., 5:3 (1981), 303–323 | DOI | MR | Zbl

[42] W. Craig, D. Nicholls, “Travelling two and three dimensional capillary gravity water waves”, SIAM J. Math. Anal., 32:2 (2000), 323–359 | DOI | MR | Zbl

[43] P. I. Plotnikov, J. F. Toland, “Nash–Moser theory for standing water waves”, Arch. Ration. Mech. Anal., 159:1 (2001), 1–83 | DOI | MR | Zbl

[44] G. Iooss, P. I. Plotnikov, J. F. Toland, “Standing waves on an infinitely deep perfect fluid under gravity”, Arch. Ration. Mech. Anal., 177:3 (2005), 367–478 | DOI | MR | Zbl

[45] W. Craig, P. Sternberg, “Symmetry of solitary waves”, Comm. Partial Differential Equations, 13:5 (1988), 603–633 | DOI | MR | Zbl

[46] W. Craig, “Non-existence of solitary water waves in three dimensions”, R. Soc. Lond. Philos. Trans. Ser. A. Math. Phys. Eng. Sci., 360:1799 (2002), 2127–2135 | DOI | MR | Zbl

[47] M. Groves, S.-M. Sun, “Fully localised solitary-wave solutions of the three-dimensional gravity-capillary water-wave problem”, Arch. Ration. Mech. Anal (to appear)

[48] P. I. Plotnikov, “Needinstvennost reshenii zadachi ob uedinennykh volnakh i bifurkatsii kriticheskikh tochek gladkikh funktsionalov”, Izv. RAN. Ser. matem., 55:2 (1991), 339–366 ; P. I. Plotnikov, “Nonuniqueness of solutions of a problem on solitary waves, and bifurcations of critical points of smooth functionals”, Math. USSR-Izv., 38:2 (1992), 333–357 | MR | Zbl | DOI

[49] W. Craig, P. Guyenne, J. Hammack, D. Henderson, C. Sulem, “Solitary water wave interactons”, Phys. Fluids, 18:5 (2006), 057106 | DOI | MR | Zbl

[50] K. Hasselmann, “On the non-linear energy transfer in a gravity-wave spectrum. I. General theory”, J. Fluid Mech., 12 (1962), 481–500 | DOI | MR | Zbl

[51] V. E. Zakharov, V. S. Lvov, “Statisticheskoe opisanie nelineinykh volnovykh polei”, Izv. vuzov. Ser. radiofiz., 18:10 (1975), 1470–1487 | MR

[52] V. E. Zakharov, V. S. L'vov, G. Falkovich, Kolmogorov spectra of turbulence. I. Wave turbulence, Springer-Verlag, Berlin–New York, 1992 | Zbl

[53] P. Gérard, P. Markowich, N. Mauser, F. Poupaud, “Homogenization limits and Wigner transforms”, Comm. Pure Appl. Math., 50:4 (1997), 323–379 | 3.0.CO;2-C class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI | MR | Zbl

[54] M. A. Donelan, J. Hamilton, W. H. Hui, “Directional spectra of wind-generated waves”, R. Soc. Lond. Philos. Trans. Ser. A. Math. Phys. Eng. Sci., 315:1534 (1985), 509–562 | DOI