More Ramanujan-type formulae for $1/\pi^2$
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 62 (2007) no. 3, pp. 634-636 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

@article{RM_2007_62_3_a16,
     author = {W. V. Zudilin},
     title = {More {Ramanujan-type} formulae for $1/\pi^2$},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {634--636},
     year = {2007},
     volume = {62},
     number = {3},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/RM_2007_62_3_a16/}
}
TY  - JOUR
AU  - W. V. Zudilin
TI  - More Ramanujan-type formulae for $1/\pi^2$
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2007
SP  - 634
EP  - 636
VL  - 62
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/RM_2007_62_3_a16/
LA  - en
ID  - RM_2007_62_3_a16
ER  - 
%0 Journal Article
%A W. V. Zudilin
%T More Ramanujan-type formulae for $1/\pi^2$
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2007
%P 634-636
%V 62
%N 3
%U http://geodesic.mathdoc.fr/item/RM_2007_62_3_a16/
%G en
%F RM_2007_62_3_a16
W. V. Zudilin. More Ramanujan-type formulae for $1/\pi^2$. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 62 (2007) no. 3, pp. 634-636. http://geodesic.mathdoc.fr/item/RM_2007_62_3_a16/

[1] S. Ramanujan, Quart. J. Math. Oxford (2), 45 (1914), 350–372 ; Collected papers of Srinivasa Ramanujan, Cambridge Univ. Press, Cambridge, 1927, 1962, 23–39 | Zbl

[2] J. M. Borwein, P. B. Borwein, Pi and the AGM, Canad. Math. Soc. Ser. Monogr. Adv. Texts, Wiley, New York, 1987 | MR | Zbl

[3] D. V. Chudnovsky, G. V. Chudnovsky, Ramanujan revisited (Urbana-Champaign, Ill., 1987), Academic Press, Boston, MA, 1988, 375–472 | MR | Zbl

[4] H. H. Chan, W.-C. Liaw, V. Tan, J. London Math. Soc. (2), 64:1 (2001), 93–106 | DOI | MR | Zbl

[5] H. H. Chan, S. H. Chan, Z. Liu, Adv. Math., 186:2 (2004), 396–410 | DOI | MR | Zbl

[6] J. Guillera, Adv. in Appl. Math., 29:4 (2002), 599–603 | DOI | MR | Zbl

[7] J. Guillera, Ramanujan J., 11:1 (2006), 41–48 | DOI | MR | Zbl

[8] L. J. Slater, Generalized hypergeometric functions, Cambridge Univ. Press, Cambridge, 1966 | MR | Zbl

[9] V. V. Zudilin, Matem. zametki, 81:3 (2007), 335–340 | MR | Zbl