Generalized symmetric powers and a generalization of the Kolmogorov–Gel'fand–Buchstaber–Rees theory
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 62 (2007) no. 3, pp. 623-625 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

@article{RM_2007_62_3_a12,
     author = {T. Voronov and H. M. Khudaverdian},
     title = {Generalized symmetric powers and a~generalization of the {Kolmogorov{\textendash}Gel'fand{\textendash}Buchstaber{\textendash}Rees} theory},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {623--625},
     year = {2007},
     volume = {62},
     number = {3},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/RM_2007_62_3_a12/}
}
TY  - JOUR
AU  - T. Voronov
AU  - H. M. Khudaverdian
TI  - Generalized symmetric powers and a generalization of the Kolmogorov–Gel'fand–Buchstaber–Rees theory
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2007
SP  - 623
EP  - 625
VL  - 62
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/RM_2007_62_3_a12/
LA  - en
ID  - RM_2007_62_3_a12
ER  - 
%0 Journal Article
%A T. Voronov
%A H. M. Khudaverdian
%T Generalized symmetric powers and a generalization of the Kolmogorov–Gel'fand–Buchstaber–Rees theory
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2007
%P 623-625
%V 62
%N 3
%U http://geodesic.mathdoc.fr/item/RM_2007_62_3_a12/
%G en
%F RM_2007_62_3_a12
T. Voronov; H. M. Khudaverdian. Generalized symmetric powers and a generalization of the Kolmogorov–Gel'fand–Buchstaber–Rees theory. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 62 (2007) no. 3, pp. 623-625. http://geodesic.mathdoc.fr/item/RM_2007_62_3_a12/

[1] I. M. Gelfand, A. N. Kolmogorov, Dokl. AN SSSR, 22 (1939), 11–15 | Zbl

[2] V. M. Bukhshtaber, E. G. Ris, UMN, 59:1 (2004), 125–144 | MR

[3] H. M. Khudaverdian, Th. Th. Voronov, Lett. Math. Phys., 74:2 (2005), 201–228 | DOI | MR | Zbl

[4] V. M. Buchstaber, E. G. Rees, “Frobenius $n$-homomorphisms, transfers and branched coverings”, Math. Proc. Cambridge Philos. Soc. (to appear)