Euler equations for incompressible ideal fluids
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 62 (2007) no. 3, pp. 409-451

Voir la notice de l'article provenant de la source Math-Net.Ru

This article is a survey concerning the state-of-the-art mathematical theory of the Euler equations for an incompressible homogeneous ideal fluid. Emphasis is put on the different types of emerging instability, and how they may be related to the description of turbulence.
@article{RM_2007_62_3_a1,
     author = {C. Bardos and E. S. Titi},
     title = {Euler equations for incompressible ideal fluids},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {409--451},
     publisher = {mathdoc},
     volume = {62},
     number = {3},
     year = {2007},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/RM_2007_62_3_a1/}
}
TY  - JOUR
AU  - C. Bardos
AU  - E. S. Titi
TI  - Euler equations for incompressible ideal fluids
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2007
SP  - 409
EP  - 451
VL  - 62
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/RM_2007_62_3_a1/
LA  - en
ID  - RM_2007_62_3_a1
ER  - 
%0 Journal Article
%A C. Bardos
%A E. S. Titi
%T Euler equations for incompressible ideal fluids
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2007
%P 409-451
%V 62
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/RM_2007_62_3_a1/
%G en
%F RM_2007_62_3_a1
C. Bardos; E. S. Titi. Euler equations for incompressible ideal fluids. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 62 (2007) no. 3, pp. 409-451. http://geodesic.mathdoc.fr/item/RM_2007_62_3_a1/