@article{RM_2007_62_3_a1,
author = {C. Bardos and E. S. Titi},
title = {Euler equations for incompressible ideal fluids},
journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
pages = {409--451},
year = {2007},
volume = {62},
number = {3},
language = {en},
url = {http://geodesic.mathdoc.fr/item/RM_2007_62_3_a1/}
}
C. Bardos; E. S. Titi. Euler equations for incompressible ideal fluids. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 62 (2007) no. 3, pp. 409-451. http://geodesic.mathdoc.fr/item/RM_2007_62_3_a1/
[1] S. Montgomery-Smith, “Finite time blow up for a Navier–Stokes like equation”, Proc. Amer. Math. Soc., 129:10 (2001), 3025–3029 | DOI | MR | Zbl
[2] H. Bellout, S. Benachour, E. S. Titi, “Finite-time singularity versus global regularity for hyper-viscous Hamilton–Jacobi-like equations”, Nonlinearity, 16:6 (2003), 1967–1989 | DOI | MR | Zbl
[3] T. Kato, “Remarks on zero viscosity limit for non stationary Navier–Stokes flows with boundary”, Seminar on nonlinear partial differential equations (Berkeley, 1983), Math. Sci. Res. Inst. Publ., 2, ed. S. S. Chern, Springer, New York, 1984, 85–98 | MR | Zbl
[4] G. Lebeau, “Régularité du problème de Kelvin–Helmholtz pour l'équation d'Euler 2d”, ESAIM Control Optim. Calc. Var., 8 (2002), 801–825 | DOI | MR | Zbl
[5] S. Wu, “Recent progress in mathematical analysis of vortex sheets”, Proceedings of the international congress of mathematicians. Vol. III. Invited lectures (Beijing, China, 2002), Higher Ed. Press, Beijing, 2002, 233–242 | MR | Zbl
[6] S. Wu, “Mathematical analysis of vortex sheets”, Comm. Pure Appl. Math., 59:8 (2006), 1065–1206 | DOI | MR | Zbl
[7] A. J. Majda, A. L. Bertozzi, Vorticity and incompressible flow, Cambridge Texts Appl. Math., 27, Cambridge Univ. Press, Cambridge, 2002 | MR | Zbl
[8] C. Marchioro, M. Pulvirenti, Mathematical theory of incompressible nonviscous fluids, Appl. Math. Sci., 96, Springer-Verlag, New York, 1994 | MR | Zbl
[9] L. Lichtenstein, “Über einige Existenzprobleme der Hydrodynamik homogener, unzusammendrückbarer, reibungsloser Flüssigkeiten und die Helmholtzschen Wirbelsätze”, Math. Z., 23:1 (1925), 89–154 ; “Über einige Existenzprobleme der Hydrodynamik. Zweite Abhandlung. Nichthomogene, unzusammendrückbare, reibungslose Flüssigkeiten”, Math. Z., 26:1 (1927), 196–323 ; “Über einige Existenzprobleme der Hydrodynamik. III. Permanente Bewegungen einer homogenen, inkompressiblen, zähen Flüssigkeit”, Math. Z., 28 (1928), 387–415 ; “Über einige Existenzprobleme der Hydrodynamik. IV. Stetigkeitssätze. Eine Begründung der Helmholtz–Kirchhoffschen Theorie geradliniger Wirbelfäden”, Math. Z., 32:1 (1930), 608–640 | DOI | MR | Zbl | DOI | MR | Zbl | DOI | MR | Zbl | DOI | MR | Zbl
[10] C. Bardos, S. Benachour, “Domaine d'analyticité des solutions de l'équation d'Euler dans un ouvert de $\mathbb{R}^n$”, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), 4:4 (1977), 647–687 | MR | Zbl
[11] J. T. Beale, T. Kato, A. Majda, “Remarks on the breakdown of smooth solutions for the 3-D Euler equations”, Comm. Math. Phys., 94:1 (1984), 61–66 | DOI | MR | Zbl
[12] A. Ferrari, “On the blow-up of solutions of the 3-D Euler equations in a bounded domain”, Comm. Math. Phys., 155:2 (1993), 277–294 | DOI | MR | Zbl
[13] H. Kozono, T. Ogawa, Y. Taniuchi, “Navier–Stokes equations in the Besov space near $L^{\infty}$ and BMO”, Kyushu J. Math., 57:2 (2003), 303–324 | DOI | MR | Zbl
[14] Y. Meyer, Wavelets and operators, vol. I, Cambridge Stud. Adv. Math., 37, Cambridge Univ. Press, Cambridge, 1992 | MR | Zbl
[15] G. Ponce, “Remarks on a paper “Remarks on the breakdown of smooth solutions for the 3-D Euler equations” by J. T. Beale, T. Kato and A. Majda”, Comm. Math. Phys., 98:3 (1985), 349–353 | DOI | MR | Zbl
[16] P. Constantin, C. Fefferman, A. Madja, “Geometric constraints on potential singular solutions for the 3-D Euler equation”, Comm. Partial Differential Equations, 21:3–4 (1996), 559–571 | MR | Zbl
[17] P. Constantin, “Euler equations, Navier–Stokes equations and turbulence”, Mathematical foundation of turbulent viscous flows (Martina Franca, Italy, 2003), Lecture Notes in Math., 1871, eds. M. Cannone, T. Miyakawa, Springer, Berlin, 2006, 1–43 | MR
[18] V. I. Yudovich, “Nestatsionarnye techeniya idealnoi neszhimaemoi zhidkosti”, ZhVM i MF, 3 (1963), 1032–1066 | MR | Zbl
[19] J.-M. Delort, “Existence de nappes de tourbillon en dimension deux”, J. Amer. Math. Soc., 4:3 (1991), 553–586 | DOI | MR | Zbl
[20] V. Scheffer, “An inviscid flow with compact support in space-time”, J. Geom. Anal., 3:4 (1993), 343–401 | MR | Zbl
[21] A. Shnirelman, “On the nonuniqueness of weak solution of the Euler equation”, Comm. Pure Appl. Math., 50:12 (1997), 1261–1286 | 3.0.CO;2-6 class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI | MR | Zbl
[22] R. Caflisch, O. Orellana, “Singular solutions and ill-posedness for the evolution of vortex sheets”, SIAM J. Math. Anal., 20:2 (1989), 293–307 | DOI | MR | Zbl
[23] K. Ohkitani, J. D. Gibbon, “Numerical study of singularity formation in a class of Euler and Navier–Stokes flows”, Phys. Fluids, 12:12 (2000), 3181–3194 | DOI | MR
[24] T. Hou, C. Li, Dynamic stability of the $3D$ axi-symmetric Navier–Stokes equations with swirl, arXiv: math.AP/0608295
[25] J. Leray, “Étude de diverses équations intégrales nonlinéaires et de quelques problèmes que pose l'hydrodynamique”, J. Math. Pures Appl. (9), 12 (1933), 1–82 | Zbl
[26] J. Leray, “Essai sur les mouvements plans d'une liquide visqueux que limitent des parois”, J. Math. Pures Appl. (9), 13 (1934), 331–418 | Zbl
[27] J. Leray, “Sur le mouvement d'un liquide visqueux emplissant l'espace”, Acta Math., 63:1 (1934), 193–248 | DOI | MR | Zbl
[28] E. Hopf, “Ein allgemeiner Endlichkeitssatz der Hydrodynamik”, Math. Ann., 117:1 (1941), 764–775 | DOI | MR | Zbl
[29] E. Hopf, “Über die Anfangswertaufgabe für die hydrodynamischen Grundgleichungen”, Math. Nachr., 4 (1951), 213–231 | MR | Zbl
[30] E. Hopf, “On nonlinear partial differential equations”, Lecture series of the symposium on partial differential equations (Berkeley, 1955), Univ. Kansas Press, Lawrence, 1957, 1–29
[31] O. A. Ladyzhenskaya, “Shestaya problema tysyacheletiya: uravneniya Nave–Stoksa, suschestvovanie i gladkost”, UMN, 58:2 (2003), 45–78 | MR | Zbl
[32] L. Caffarelli, R. Kohn, L. Nirenberg, “Partial regularity of suitable weak solutions of the Navier–Stokes equations”, Comm. Pure Appl. Math., 35:6 (1982), 771–831 | DOI | MR | Zbl
[33] B. E. Launder, D. B. Spalding, Lectures in mathematical models of turbulence, Academic Press, London–New York, 1972 | Zbl
[34] B. Mohammadi, O. Pironneau, Analysis of the $k$-epsilon turbulence model, RAM Res. Appl. Math., Masson, Paris; Wiley, Chichester, 1994 | MR
[35] S. B. Pope, Turbulent flows, Cambridge Univ. Press, Cambridge, 2000 | MR | Zbl
[36] J. S. Smagorinsky, “General circulation experiments with the primitive equations”, Monthly Weather Rev., 91:3 (1963), 99–164 | 2.3.CO;2 class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI
[37] L. Onsager, “Statistical hydrodynamics”, Nuovo Cimento, 6:2 (suppl.) (1949), 279–287 | DOI | MR
[38] G. L. Eyink, “Energy dissipation without viscosity in ideal hydrodynamics. I. Fourier analysis and local energy transfer”, Phys. D, 78:3–4 (1994), 222–240 | DOI | MR | Zbl
[39] P. Constantin, W. E, E. S. Titi, “Onsager's conjecture on the energy conservation for solutions of Euler's equation”, Comm. Math. Phys., 165:2 (1994), 207–209 | DOI | MR | Zbl
[40] P.-L. Lions, Mathematical topics in fluid mechanics. Vol. 1. Incompressible models, Oxford Lecture Ser. Math. Appl., 3, Clarendon Press, Oxford, 1996 | MR | Zbl
[41] P. Constantin, C. Foias, Navier–Stokes equations, Chicago Lectures in Math., Univ. Chicago Press, Chicago, IL, 1988 | MR | Zbl
[42] G. David, “Courbes corde-arc et espaces de Hardy généralisés”, Ann. Inst. Fourier (Grenoble), 32:3 (1982), 227–239 | MR | Zbl
[43] C. Bardos, F. Golse, D. Levermore, “Fluid dynamic limits of kinetic equations. I. Formal derivations”, J. Statist. Phys., 63:1–2 (1991), 323–344 | DOI | MR
[44] Z. R. DiPerna, P.-L. Lions, “On the Cauchy problem for Boltzmann equations: global existence and weak stability”, Ann. of Math. (2), 130:2 (1989), 321–366 | DOI | MR | Zbl
[45] F. Golse, L. Saint-Raymond, “The Navier–Stokes limit of the Boltzmann equation for bounded collision kernels”, Invent. Math., 155:1 (2004), 81–161 | DOI | MR | Zbl
[46] L. Saint-Raymond, “Convergence of solutions to the Boltzmann equation in the incompressible Euler limit”, Arch. Ration. Mech. Anal., 166:1 (2003), 47–80 | DOI | MR | Zbl
[47] C. Cheverry, “Propagation of oscillations in real vanishing viscosity limits”, Comm. Math. Phys., 247:3 (2004), 655–695 | DOI | MR | Zbl
[48] C. Bardos, “Existence et unicité de la solution de l'équation d'Euler en dimension deux”, J. Math. Anal. Appl., 40:3 (1972), 769–790 | DOI | MR | Zbl
[49] P. Constantin, J. Wu, “The inviscid limit for non-smooth vorticity”, Indiana Univ. Math. J., 45:1 (1996), 67–81 | DOI | MR | Zbl
[50] M. C. Lopes Filho, H. J. Nussenzveig Lopes, Z. Xin, “Existence of vortex sheets with reflection symmetry in two space dimensions”, Arch. Ration. Mech. Anal., 158:3 (2001), 235–257 | DOI | MR | Zbl
[51] P. Gérard, P. Markowich, N. Mauser, F. Poupaud, “Homogenization limits and Wigner transforms”, Comm. Pure Appl. Math., 50:4 (1997), 323–379 | 3.0.CO;2-C class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI | MR | Zbl
[52] M. I. Vishik, A. V. Fursikov, Matematicheskie problemy statisticheskoi mekhaniki, Nauka, M., 1980 ; M. Vishik, A. Fursikov, Mathematical problems of statistical hydromechanics, Math. Appl. (Soviet Ser.), 9, Kluwer, Dordrecht, 1988 | MR | Zbl | Zbl
[53] C. Foias, O. Manely, R. Rosa, R. Temam, Navier–Stokes equations and turbulence, Encyclopedia Math. Appl., 83, Cambridge Univ. Press, Cambridge, 2001 | MR | Zbl
[54] C. Foias, “What do the Navier–Stokes equations tell us about turbulence?”, Harmonic analysis and nonlinear differential equations (Riverside, CA, USA, 1995), Contemp. Math., 208, Providence, RI, Amer. Math. Soc., 1997, 151–180 | MR | Zbl
[55] U. Frisch, Turbulence. The legacy of A. N. Kolmogorov, Cambridge Univ. Press, Cambridge, 1995 ; U. Frish, Turbulentnost. Nasledie Kolmogorova, Fazis, M., 1998 | MR | Zbl
[56] E. Grenier, “On the nonlinear instability of Euler and Prandtl equations”, Comm. Pure Appl. Math., 53:9 (2000), 1067–1109 | 3.0.CO;2-Q class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI | MR | Zbl
[57] O. A. Oleinik, “K matematicheskoi teorii pogranichnogo sloya dlya nestatsionarnogo techeniya neszhimaemoi zhidkosti”, PMM, 30:5 (1966), 801–821 | MR | Zbl
[58] W. E, B. Engquist, “Blowup of solutions to the unsteady Prandtl's equation”, Comm. Pure Appl. Math., 50:12 (1997), 1287–1293 | 3.0.CO;2-4 class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI | MR | Zbl
[59] W. E, “Boundary layer theory and the zero-viscosity limit of the Navier–Stokes equation”, Acta Math. Sin. (Engl. Ser.), 16:2 (2000), 207–218 | DOI | MR | Zbl
[60] K. Asano, “Zero-viscosity limit of the incompressible Navier–Stokes equations. II”, Mathematical analysis of fluid and plasma dynamics, I (Kyoto, 1986), Sūrikaisekikenkyūsho Kōkyūroku, 656, Kyoto Univ., Kyoto, 1988, 105–128 | MR | Zbl
[61] R. Caflisch, M. Sammartino, “Navier–Stokes equations on a circular domain: construction of the solution and zero viscosity limit”, C. R. Acad. Sci. Paris. Sér. I Math., 324:8 (1997), 861–866 | DOI | MR | Zbl
[62] M. Cannone, M. C. Lombardo, M. Sammartino, “Existence and uniqueness for Prandtl equations”, C. R. Acad. Sci. Paris. Sér. I Math., 332:3 (2001), 277–282 | DOI | MR | Zbl
[63] C. Sulem, P.-L. Sulem, C. Bardos, U. Frisch, “Finite time analyticity for the two and three dimensional Kelvin–Helmholtz instability”, Comm. Math. Phys., 80:4 (1981), 485–516 | DOI | MR | Zbl
[64] J. Duchon, R. Robert, “Global vortex sheet solutions of Euler equations in the plane”, J. Differential Equations, 73:2 (1988), 215–224 | DOI | MR | Zbl
[65] D. W. Moore, “The spontaneous appearance of a singularity in the shape of an evolving vortex sheet”, Proc. Roy. Soc. London. Ser. A, 365:1720 (1979), 105–119 | DOI | MR | Zbl
[66] D. Meiron, G. Baker, S. Orszag, “Analytic structure of vortex sheet dynamics. I. Kelvin–Helmholtz instability”, J. Fluid Mech., 114 (1982), 283–298 | DOI | MR | Zbl
[67] V. Kamotski, G. Lebeau, “On 2D Rayleigh–Taylor instabilities”, Asymptot. Anal., 42:1–2 (2005), 1–27 | MR | Zbl
[68] R. Krasny, “Computation of vortex sheet roll-up in Trefftz plane”, J. Fluid Mech., 184 (1987), 123–155 | DOI
[69] S. Wu, “Well-posedness in Sobolev spaces of the full water wave problem in 2-D”, Invent. Math., 130:1 (1997), 39–72 | DOI | MR | Zbl
[70] M. C. Lopes Filho, H. J. Nussenzveig Lopes, M. O. Souza, “On the equation satisfied by a steady Prandtl–Munk vortex sheet”, Commun. Math. Sci., 1:1 (2003), 68–73 | MR | Zbl
[71] M. C. Lopes Filho, H. J. Nussenzveig Lopes, S. Schochet, A criterion for the equivalence of the Birkhoff–Rott and Euler description of vortex sheet evolution, arXiv: math.AP/0502215