Weakly infinite-dimensional spaces
    
    
  
  
  
      
      
      
        
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 62 (2007) no. 2, pp. 323-374
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			In this survey article two new classes of spaces are considered: $m$-$C$-spaces and $w$-$m$-$C$-spaces, $m=2,3,\dots,\infty$. They are intermediate between the class of weakly infinite-dimensional spaces in the Alexandroff sense and the class of $C$-spaces. The classes of $2$-$C$-spaces and $w$-$2$-$C$-spaces coincide with the class of weakly infinite-dimensional spaces, while the compact $\infty$-$C$-spaces are exactly the $C$-compact spaces of Haver. The main results of the theory of weakly infinite-dimensional spaces, including classification via transfinite Lebesgue dimensions and Luzin–Sierpińsky indices, extend to these new classes of spaces. Weak $m$-$C$-spaces are characterised by means of essential maps to Henderson's $m$-compacta. The existence of hereditarily $m$-strongly infinite-dimensional spaces is proved.
			
            
            
            
          
        
      @article{RM_2007_62_2_a1,
     author = {V. V. Fedorchuk},
     title = {Weakly infinite-dimensional spaces},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {323--374},
     publisher = {mathdoc},
     volume = {62},
     number = {2},
     year = {2007},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/RM_2007_62_2_a1/}
}
                      
                      
                    V. V. Fedorchuk. Weakly infinite-dimensional spaces. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 62 (2007) no. 2, pp. 323-374. http://geodesic.mathdoc.fr/item/RM_2007_62_2_a1/
