Weakly infinite-dimensional spaces
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 62 (2007) no. 2, pp. 323-374 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In this survey article two new classes of spaces are considered: $m$-$C$-spaces and $w$-$m$-$C$-spaces, $m=2,3,\dots,\infty$. They are intermediate between the class of weakly infinite-dimensional spaces in the Alexandroff sense and the class of $C$-spaces. The classes of $2$-$C$-spaces and $w$-$2$-$C$-spaces coincide with the class of weakly infinite-dimensional spaces, while the compact $\infty$-$C$-spaces are exactly the $C$-compact spaces of Haver. The main results of the theory of weakly infinite-dimensional spaces, including classification via transfinite Lebesgue dimensions and Luzin–Sierpińsky indices, extend to these new classes of spaces. Weak $m$-$C$-spaces are characterised by means of essential maps to Henderson's $m$-compacta. The existence of hereditarily $m$-strongly infinite-dimensional spaces is proved.
@article{RM_2007_62_2_a1,
     author = {V. V. Fedorchuk},
     title = {Weakly infinite-dimensional spaces},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {323--374},
     year = {2007},
     volume = {62},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/RM_2007_62_2_a1/}
}
TY  - JOUR
AU  - V. V. Fedorchuk
TI  - Weakly infinite-dimensional spaces
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2007
SP  - 323
EP  - 374
VL  - 62
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/RM_2007_62_2_a1/
LA  - en
ID  - RM_2007_62_2_a1
ER  - 
%0 Journal Article
%A V. V. Fedorchuk
%T Weakly infinite-dimensional spaces
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2007
%P 323-374
%V 62
%N 2
%U http://geodesic.mathdoc.fr/item/RM_2007_62_2_a1/
%G en
%F RM_2007_62_2_a1
V. V. Fedorchuk. Weakly infinite-dimensional spaces. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 62 (2007) no. 2, pp. 323-374. http://geodesic.mathdoc.fr/item/RM_2007_62_2_a1/

[1] P. S. Aleksandrov, “O gomologicheskikh svoistvakh raspolozheniya kompleksov i zamknutykh mnozhestv”, Izv. AN SSSR. Ser. matem., 6 (1942), 227–282 | MR | Zbl

[2] A. N. Dranishnikov, “Gomologicheskaya teoriya razmernosti”, UMN, 43:4 (1988), 11–55 | MR | Zbl

[3] P. S. Aleksandrov, “Predislovie k russkomu perevodu”, v kn.: V. Gurevich, G. Volmen, Teoriya razmernosti, IL, M., 1948 | MR

[4] B. T. Levshenko, “O silno beskonechnomernykh prostranstvakh”, Vestn. Mosk. un-ta. Ser. matem., mekh., astron., fiz., khim., 1959, no. 5, 219–228 | MR | Zbl

[5] E. G. Sklyarenko, “O razmernostnykh svoistvakh beskonechnomernykh prostranstv”, Izv. AN SSSR. Ser. matem., 23 (1959), 197–212 | MR | Zbl

[6] D. W. Henderson, “Each strongly infinite-dimensional compactum contains a hereditarily infinite-dimensional compact subset”, Amer. J. Math., 89:1 (1967), 122–123 | DOI | MR | Zbl

[7] R. Pol, “A weakly infinite-dimensional compactum which is not countable-dimensional”, Proc. Amer. Math. Soc., 82:4 (1981), 634–636 | DOI | MR | Zbl

[8] P. Borst, A weakly infinite-dimensional compactum not having Property C, Preprint, Vrije Universiteit, Amsterdam, 2005 ; Fund. Math. (to appear) | MR

[9] W. E. Haver, “A covering property for metric spaces”, Topology conference (Blacksburg, VA, 1973), Lecture Notes in Math., 375, Springer, Berlin, 1974, 108–113 | DOI | MR | Zbl

[10] D. F. Addis, J. H. Gresham, “A class of infinite-dimensional spaces. I. Dimension theory and Alexandroff's problem”, Fund. Math., 101:3 (1978), 195–205 | MR | Zbl

[11] F. D. Ancel, “Proper hereditary shape equivalences preserve property $C$”, Topology Appl., 19:1 (1985), 71–74 | DOI | MR | Zbl

[12] V. Gutev, V. Valov, “Continuons selections and $C$-spaces”, Proc. Amer. Math. Soc., 130:1 (2002), 233–242 | DOI | MR | Zbl

[13] V. V. Uspenskij, “A selection theorem for $C$-spaces”, Topology Appl., 85:1–3 (1998), 351–374 | DOI | MR | Zbl

[14] V. Valov, “Continuous selections and finite $C$-spaces”, Set-Valued Anal., 10:1 (2002), 37–51 | DOI | MR | Zbl

[15] V. V. Fedorchuk, “O nekotorykh klassakh slabo beskonechnomernykh prostranstv”, Fundam. i prikl. matem. (to appear)

[16] V. V. Fedorchuk, “Questions on weakly infinite-dimensional spaces”, Open problems in topology II, ed. E. M. Pearl, Elsevier, Amsterdam, 2007, 637–645 (to appear)

[17] P. S. Aleksandrov, B. A. Pasynkov, Vvedenie v teoriyu razmernosti. Vvedenie v teoriyu topologicheskikh prostranstv i obschuyu teoriyu razmernosti, Nauka, M., 1973 | MR | Zbl

[18] R. Engelking, Theory of dimensions, finite and infinite, Sigma Ser. Pure Math., 10, Heldermann, Lemgo, 1995 | MR | Zbl

[19] R. Pol, H. Toruńczyk, “Topics in dimension theory”, Recent progress in general topology, II (Prague, Czech Republic, 2001), eds. M. Hušek, J. van Mill, Elsevier, Amsterdam, 2002, 395–421 | MR | Zbl

[20] P. Urysohn, “Mémoire sur les multiplicités Cantoriennes”, Fund. Math., 7 (1925), 30–137 | Zbl

[21] W. Hurewicz, “Über unendlich-dimensionale Punktmengen”, Proc. Akad. Amsterdam, 31 (1928), 916–922 | Zbl

[22] Yu. M. Smirnov, “Ob universalnykh prostranstvakh dlya nekotorykh klassov beskonechnomernykh prostranstv”, Izv. AN SSSR. Ser. matem., 23 (1959), 185–196 | MR | Zbl

[23] V. V. Fedorchuk, “O nekotorykh voprosakh topologicheskoi teorii razmernosti”, UMN, 57:2 (2002), 139–178 | MR | Zbl

[24] B. A. Pasynkov, V. V. Fedorchuk, V. V. Filippov, “Teoriya razmernosti”, Itogi nauki i tekhniki. Algebra. Topologiya. Geometriya, 17, VINITI, M., 1979, 229–306 ; B. A. Pasynkov, V. V. Fedorchuk, V. V. Filippov, “Dimension theory”, J. Sov. Math., 18 (1982), 789–841 | MR | Zbl | DOI | Zbl

[25] P. Urysohn, “Mémoire sur les multiplicités Cantoriennes (suite)”, Fund. Math., 8 (1926), 225–359 | Zbl

[26] W. Hurewicz, H. Wallman, Dimension theory, Princeton Math. Ser., 4, Princeton Univ. Press, Princeton, NJ, 1941 | MR | Zbl

[27] W. E. Haver, “Locally contractible spaces that are absolute neighborhood retracts”, Proc. Amer. Math. Soc., 40:1 (1973), 280–284 | DOI | MR | Zbl

[28] R. H. Bing, “Metrisation of topological spaces”, Canad. J. Math., 3 (1951), 175–186 | MR | Zbl

[29] K. Nagami, “Paracompactness and strong screenability”, Nagoya Math. J., 8 (1955), 83–88 | MR | Zbl

[30] P. A. Ostrand, “Covering dimension in general spaces”, General Topology and Appl., 1:3 (1971), 209–221 | DOI | MR | Zbl

[31] V. A. Chatyrko, “Slabo beskonechnomernye prostranstva”, UMN, 46:3 (1991), 161–177 | MR | Zbl

[32] M. Katetov, “O prodolzhenii lokalno konechnykh pokrytii”, Colloq. Math., 6 (1958), 145–151 | MR | Zbl

[33] C. H. Dowker, “Homotopy extension theorems”, Proc. London Math. Soc. (3), 6:1 (1956), 100–116 | DOI | MR | Zbl

[34] E. Michael, “Point-finite and locally finite coverings”, Canad. J. Math., 7 (1955), 275–279 | MR | Zbl

[35] V. V. Fedorchuk, “Beskonechnomernye bikompakty”, Izv. AN SSSR. Ser. matem., 42:5 (1978), 1162–1178 ; V. V. Fedorčuk, “Infinite-dimensional compact Hausdorff spaces”, Math. USSR-Izv., 13:2 (1979), 445–460 | MR | Zbl | DOI

[36] L. A. Steen, “A direct proof that a linearly ordered space is hereditarily collectionwise normal”, Proc. Amer. Math. Soc., 24:4 (1970), 727–728 | DOI | MR | Zbl

[37] N. Khadzhiivanov, “O beskonechnomernykh prostranstvakh”, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys., 19 (1971), 491–500 | MR | Zbl

[38] L. Polkowski, “Some theorems on invariance of infinite dimension under open and closed mappings”, Fund. Math., 119:1 (1983), 11–34 | MR | Zbl

[39] K. Morita, “On the dimension of normal spaces. II”, J. Math. Soc. Japan, 2 (1950), 16–33 | MR | Zbl

[40] B. T. Levshenko, “O beskonechnomernykh prostranstvakh”, Dokl. AN SSSR, 139:2 (1961), 286–289 ; B. T. Levšenko, “On infinite dimensional spaces”, Soviet Math. Dokl., 2, 915–918 | MR | Zbl

[41] A. V. Zarelua, “O teoreme Gurevicha”, Dokl. AN SSSR, 14:4 (1961), 777–780 | MR | Zbl

[42] Yu. M. Smirnov, “O transfinitnoi razmernosti”, Matem. sb., 58(100):4 (1962), 415–422 | MR | Zbl

[43] A. I. Vainshtein, “Ob odnom klasse beskonechnomernykh prostranstv”, Matem. sb., 79(121):3(7) (1969), 433–443 | MR | Zbl

[44] Y. Hattori, K. Yamada, “Closed pre-images of $C$-spaces”, Math. Japon., 34:4 (1989), 555–561 | MR | Zbl

[45] V. V. Fedorchuk, “Vpolne zamknutye otobrazheniya i ikh prilozheniya”, Fundam. i prikl. matem., 9:4 (2003), 105–235 ; V. V. Fedorchuk, “Fully closed mappings and their applications”, J. Math. Sci. (N. Y.), 136:5 (2006), 4201–4292 | MR | Zbl | DOI

[46] E. G. Sklyarenko, “Dve teoremy o beskonechnomernykh prostranstvakh”, Dokl. AN SSSR, 143 (1962), 1053–1056 | MR | Zbl

[47] R. Pol, “On classification of weakly infinite-dimensional compacta”, Fund. Math., 116:3 (1983), 169–188 | MR | Zbl

[48] P. Borst, “Classification of weakly infinite-dimensional spaces. I. A transfinite extension of the covering dimension”, Fund. Math., 130:1 (1988), 1–25 | MR | Zbl

[49] V. A. Chatyrko, “Klassifikatsiya kompaktov so svoistvom C”, Sib. matem. zhurn., 33:6 (1992), 216–220 | MR | Zbl

[50] K. Kuratowski, Topology, vol. I, Academic Press, New York–London; Państwowe Wydawnictwo Naukowe, Warsaw, 1966 | MR | Zbl

[51] P. Borst, “Some remarks concerning C-spaces”, Topology Appl., 154:3 (2007), 665–674 | DOI | MR | Zbl

[52] P. Borst, “Classfication of weakly infinite-dimensional spaces II. Essential mappings”, Fund. Math., 130:2 (1988), 73–99 | MR | Zbl

[53] K. Yokoi, “Compactification and factorization theorems for transfinite covering dimension”, Tsukuba J. Math., 15:2 (1991), 389–395 | MR | Zbl

[54] V. A. Chatyrko, “On the transfinite dimension dim”, Questions Answers Gen. Topology, 9:2 (1991), 177–194 | MR | Zbl

[55] V. A. Chatyrko, “Classification of metric compacta with property $C$”, Questions Answers Gen. Topology, 10:1 (1992), 51–62 | MR | Zbl

[56] V. A. Chatyrko, “On factorization theorem for transfinite dimension $\dim_C$”, Sci. Math., 3:3 (2000), 357–366 | MR | Zbl

[57] R. Engelking, R. Pol, “Compactificftions of countable-dimensional and strongly countable-dimensional spaces”, Proc. Amer. Math. Soc., 104:3 (1988), 985–987 | DOI | MR | Zbl

[58] B. A. Pasynkov, “O razmernosti normalnykh prostranstv”, Dokl. AN SSSR, 201:5 (1971), 1049–1052 | MR | Zbl

[59] C. H. Dowker, “Local dimension of normal spaces”, Q. J. Math., 6:1 (1955), 101–120 | DOI | MR | Zbl

[60] D. W. Henderson, “A lower bound for transfinite dimension”, Fund. Math., 63 (1968), 167–173 | MR | Zbl

[61] P. Borst, J. J. Dijkstra, “Essential mappings and transfinite dimension”, Fund. Math., 125:1 (1985), 41–45 | MR | Zbl

[62] M. Levin, “Inessentiality with respect to subspaces”, Fund. Math., 147:1 (1995), 93–98 | MR | Zbl

[63] L. R. Rubin, “Hereditarily strongly infinite dimensional spaces”, Michigan Math. J., 27:1 (1980), 65–73 | DOI | MR | Zbl

[64] J. J. Walsh, “Infinite dimensional compacta containing no $n$-dimensional ($n\ge1$) subsets”, Topology, 18:1 (1979), 91–95 | DOI | MR | Zbl

[65] R. Pol, “On light mappings without perfect fibers on compacta”, Tsukuba J. Math., 20:1 (1996), 11–19 | MR | Zbl

[66] A. V. Zarelua, “Postroenie silno beskonechnomernykh kompaktov s pomoschyu kolets nepreryvnykh funktsii”, Dokl. AN SSSR, 214 (1974), 264–267 | MR | Zbl

[67] D. W. Henderson, “Finite dimensional subsets of infinite dimensional spaces”, Topology Seminar (Wisconsin, 1965), Ann. of Math. Stud., 60, Princeton Univ. Press, Princeton, NJ, 1966, 141–146 | Zbl

[68] V. V. Fedorchuk, “Bikompakty bez promezhutochnykh razmernostei”, Dokl. AN SSSR, 213 (1973), 795–797 | MR | Zbl

[69] F. D. Ancel, “The role of countable dimensionality in the theory of cell-like relations”, Trans. Amer. Math. Soc., 287:1 (1985), 1–40 | DOI | MR | Zbl

[70] P. Borst, “Spaces having a weakly-infinite-dimensional compactification”, Topology Appl., 21:3 (1985), 261–268 | DOI | MR | Zbl

[71] P. Borst, “On weakly infinite-dimensional subspaces”, Fund. Math., 140:3 (1992), 225–235 | MR | Zbl

[72] V. A. Chatyrko, “On the transfinite dimension dim and essential mappings”, Topology Proc., 20 (1995), 67–73 | MR | Zbl

[73] A. Chigogidze, V. Valov, “The extension dimension and $C$-spaces”, Bull. London Math. Soc., 34:6 (2002), 708–716 | DOI | MR | Zbl

[74] M. M. Choban, “Otobrazheniya i razmernostnye svoistva prostranstv”, Topologiya, Tr. MIAN, 154, Nauka, M., 1983, 296–305 ; M. M. Choban, “Mappings and dimension properties of spaces”, Proc. Steklov Inst. Math., 154 (1984), 317–326 | MR | Zbl | Zbl

[75] A. N. Dranishnikov, “Stable cohomotopy dimension and weakly infinite dimensional spaces”, Topology Appl., 47:1 (1992), 79–81 | DOI | MR | Zbl

[76] R. Engelking, General topology, Sigma Ser. Pure Math., 6, Heldermann, Berlin, 1989 | MR | Zbl

[77] V. V. Fedorchuk, “Formula Gurevicha dlya slabo beskonechnomernykh vpolne zamknutykh otobrazhenii”, Vestn. Mosk. un-ta. Ser. 1. Matem., mekh., 2006, no. 4, 54–55 | MR

[78] D. J. Garity, “Property $C$ and closed maps”, Topology Appl., 26:2 (1987), 125–130 | DOI | MR | Zbl

[79] D. J. Garity, D. M. Rohm, “Property C, refinable maps and dimension raising maps”, Proc. Amer. Math. Soc., 98:2 (1986), 336–340 | DOI | MR | Zbl

[80] J. H. Gresham, “A class of infinite-demensional spaces. II. An extension theorem and the theory of retracts”, Fund. Math., 107:3 (1980), 237–245 | MR | Zbl

[81] N. G. Hadziivanov, “A lower bound for the cardinal dimension of certain $G_\delta$ sets in Tychonoff cube”, C. R. Acad. Bulgare Sci., 28 (1975), 151–152 | MR | Zbl

[82] M. Levin, “A short construction of hereditarily infinite dimensional compacta”, Topology Appl., 65:1 (1995), 97–99 | DOI | MR | Zbl

[83] M. Levin, J. T. Rogers, “A generalization of Kelley's theorem for $C$-spaces”, Proc. Amer. Math. Soc., 128:5 (2000), 1537–1541 | DOI | MR | Zbl

[84] A. Lelek, “O razmernosti narostov pri kompaktnykh rasshireniyakh”, Dokl. AN SSSR, 160 (1965), 534–537 | MR | Zbl

[85] I. M. Leibo, “O zamknutykh otobrazheniyakh beskonechno-mernykh prostranstv”, Dokl. AN SSSR, 199 (1971), 533–535 | MR | Zbl

[86] M. Levin, L. R. Rubin, P. J. Schapiro, “The Mardešić factorization theorem for extension theory and $C$-separation”, Proc. Amer. Math. Soc., 128:10 (2000), 3099–3106 | DOI | MR | Zbl

[87] E. Pol, “A weakly infinite-dimensional space whose product with the irrationals is strongly infinite-dimensional”, Proc. Amer. Math. Soc., 98:2 (1986), 349–352 | DOI | MR | Zbl

[88] E. Pol, “Spaces whose $n$th power is weakly intinite-dimensional but whose $(n+1)$th power is not”, Proc. Amer. Math. Soc., 117:3 (1993), 871–876 | DOI | MR | Zbl

[89] R. Pol, “A remark on $A$-weakly infinite-dimensional spaces”, Topology Appl., 13:1 (1982), 97–101 | DOI | MR | Zbl

[90] R. Pol, “Countable dimensional universal sets”, Trans. Amer. Math. Soc., 297:1 (1986), 255–268 | DOI | MR | Zbl

[91] R. Pol, “Selected topics related to countable-dimensional metrizable spaces”, General topology and its relations to modern analysis and algebra, VI (Prague, 1986), Res. Exp. Math., 16, Heldermann, Berlin, 1988, 421–436 | MR | Zbl

[92] L. Polkowski, “A sum theorem for $A$-weakly infinite-dimensional spaces”, Fund. Math., 119:1 (1983), 7–10 | MR | Zbl

[93] T. Radul, “Absorbing spaces for $C$-compacta”, Topology Appl., 83:2 (1998), 127–133 | DOI | MR | Zbl

[94] D. M. Rohm, “Products of infinite-dimensional spaces”, Proc. Amer. Math. Soc., 108:4 (1990), 1019–1023 | DOI | MR | Zbl

[95] L. R. Rubin, “Noncompact hereditarily strongly infinite dimensional spaces”, Proc. Amer. Math. Soc., 79:1 (1980), 153–154 | DOI | MR | Zbl

[96] L. R. Rubin, R. M. Schori, J. J. Walsh, “New dimension-theory techniques for constructing infinite-dimensional examples”, General Topology Appl., 10:1 (1979), 93–102 | DOI | MR | Zbl

[97] E. V. Schepin, “Funktory i neschetnye stepeni kompaktov”, UMN, 36:3 (1981), 3–62 | MR | Zbl

[98] J. Segal, T. Watanabe, “Universal maps snd infinite-dimensional spaces”, Bull. Polish Acad. Sci. Math., 39:3–4 (1991), 225–228 | MR | Zbl

[99] E. G. Sklyarenko, “Neskolko zamechanii o beskonechnomernykh prostranstvakh”, Dokl. AN SSSR, 126 (1959), 1203–1206 | MR | Zbl

[100] V. V. Uspenskij, “A note on question of R. Pol concerning light maps”, Topology Appl., 103:3 (2000), 291–294 | DOI | MR | Zbl

[101] K. Yamada, “Mapping and product theorems for infinite-dimensional spaces”, Glas. Mat. Ser. III, 23(43):1 (1988), 193–202 | MR | Zbl

[102] A. V. Zarelua, “O nasledstvenno beskonechnomernykh prostranstvakh”, Theory of sets and topology, in honour of Felix Hausdorff, 1868–1942, VEB Deutsch. Verlag Wissensch., Berlin, 1972, 509–525 | MR | Zbl