Dixmier traces and some applications in non-commutative geometry
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 61 (2006) no. 6, pp. 1039-1099 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

This is a discussion of recent progress in the theory of singular traces on ideals of compact operators, with emphasis on Dixmier traces and their applications in non-commutative geometry. The starting point is the book Non-commutative geometry by Alain Connes, which contains several open problems and motivations for their solutions. A distinctive feature of the exposition is a treatment of operator ideals in general semifinite von Neumann algebras. Although many of the results presented here have already appeared in the literature, new and improved proofs are given in some cases. The reader is referred to the table of contents below for an overview of the topics considered.
@article{RM_2006_61_6_a1,
     author = {A. L. Carey and F. A. Sukochev},
     title = {Dixmier traces and some applications in non-commutative geometry},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {1039--1099},
     year = {2006},
     volume = {61},
     number = {6},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/RM_2006_61_6_a1/}
}
TY  - JOUR
AU  - A. L. Carey
AU  - F. A. Sukochev
TI  - Dixmier traces and some applications in non-commutative geometry
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2006
SP  - 1039
EP  - 1099
VL  - 61
IS  - 6
UR  - http://geodesic.mathdoc.fr/item/RM_2006_61_6_a1/
LA  - en
ID  - RM_2006_61_6_a1
ER  - 
%0 Journal Article
%A A. L. Carey
%A F. A. Sukochev
%T Dixmier traces and some applications in non-commutative geometry
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2006
%P 1039-1099
%V 61
%N 6
%U http://geodesic.mathdoc.fr/item/RM_2006_61_6_a1/
%G en
%F RM_2006_61_6_a1
A. L. Carey; F. A. Sukochev. Dixmier traces and some applications in non-commutative geometry. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 61 (2006) no. 6, pp. 1039-1099. http://geodesic.mathdoc.fr/item/RM_2006_61_6_a1/

[1] J. Dixmier, “Existence de traces non normales”, C. R. Acad. Sci. Paris Sér. A, 262 (1966), 1107–1108 | MR | Zbl

[2] A. Connes, “The action functional in non-commutative geometry”, Comm. Math. Phys., 117:4 (1988), 673–683 | DOI | MR | Zbl

[3] M. Wodzicki, “Noncommutative residue. I: Fundamentals”, $K$-theory, arithmetic and geometry (Moscow, 1984–1986), Lecture Notes in Math., 1289, Springer-Verlag, Berlin, 1987, 320–399 | MR | Zbl

[4] M. Adler, “On a trace functional for formal pseudo-differential operators and the symplectic structure of the Korteweg–de Vries type equations”, Invent. Math., 50:3 (1978), 219–248 | DOI | MR

[5] Yu. I. Manin, “Algebraicheskie aspekty nelineinykh differentsialnykh uravnenii”, Itogi nauki i tekhniki. Sovrem. problemy matem., 11, VINITI, M., 1978, 5–152 | MR | Zbl

[6] V. Guillemin, “A new proof of Weyl's formula on the asymptotic distribution of eigenvalues”, Adv. Math., 55:2 (1985), 131–160 | DOI | MR | Zbl

[7] A. Connes, Noncommutative geometry, Academic Press, San Diego, CA, 1994 | MR | Zbl

[8] J. M. Gracia-Bondía, J. C. Várilly, H. Figueroa, Elements of noncommutative geometry, Birkhäuser Advanced Texts: Basler Lehrbücher, Birkhäuser, Boston, MA, 2001 | MR | Zbl

[9] A. Connes, “Essay on physics and noncommutative geometry”, The interface of mathematics and particle physics (Oxford, 1988), Inst. Math. Appl. Conf. Ser. New Ser., 24, Oxford Univ. Press, New York, 1990, 9–48 | MR

[10] A. Connes, J. Lott, “Particle models and noncommutative geometry”, Recent advances in field theory (Annecy-le-Vieux, 1990), Nuclear Phys. B Proc. Suppl., 18 (1991), 29–47 | DOI | MR | Zbl

[11] A. Connes, “Noncommutative geometry and reality”, J. Math. Phys., 36:11 (1995), 6194–6231 | DOI | MR | Zbl

[12] W. Kalau, “Hamilton formalism in non-commutative geometry”, J. Geom. Phys., 18:4 (1996), 349–380 | DOI | MR | Zbl

[13] D. Kastler, “Noncommutative geometry and basic physics”, Geometry and quantum physics (Schladming, 1999), Lecture Notes in Phys., 543, Springer, Berlin, 2000, 131–230 | MR | Zbl

[14] D. Kastler, “Noncommutative geometry and fundamental physical interaction: The Lagrangian level – historical sketch and description of the present situation”, J. Math. Phys., 41:6 (2000), 3867–3891 | DOI | MR | Zbl

[15] A. Connes, “Trace de Dixmier, modules de Fredholm et géométrie riemannienne”, Conformal field theories and related topics (Annecy-le-Vieux, 1988), Nuclear Phys. B Proc. Suppl., 5:2 (1988), 65–70 | DOI | MR | Zbl

[16] A. Connes, “Gravity coupled with matter and the foundation of non-commutative geometry”, Comm. Math. Phys., 182:1 (1996), 155–176 | DOI | MR | Zbl

[17] M. F. Atiyah, “Elliptic operators, discrete groups and von Neumann algebras”, Colloque “Analyse et Topologie” en l'honneur de Henri Cartan (Orsay, 1974), Astérisque, 32–33, Soc. Math. France, Paris, 1976, 43–72 | MR | Zbl

[18] S. Albeverio, D. Guido, A. Ponosov, S. Scarlatti, “Singular traces and compact operators”, J. Funct. Anal., 137:2 (1996), 281–302 | DOI | MR | Zbl

[19] S. Albeverio, D. Guido, A. Ponosov, S. Scarlatti, “Singular traces and nonstandard analysis”, Advances in analysis, probability and mathematical physics (Blaubeuren, 1992), Math. Appl., 314, Kluwer, Dordrecht, 1995, 3–19 | MR | Zbl

[20] S. Albeverio, D. Guido, A. Ponosov, S. Scarlatti, “Nonstandard representation of nonnormal traces”, Dynamics of complex and irregular systems (Bielefeld, 1991), Bielefeld Encount. Math. Phys., VIII, World Scientific, River Edge, NJ, 1993, 1–11 | MR

[21] N. A. Azamov, F. A. Sukochev, “A Lidskii type formula for Dixmier traces”, C. R. Math. Acad. Sci. Paris, 340:2 (2005), 107–112 | DOI | MR | Zbl

[22] M.-T. Benameur, T. Fack, “Type II non-commutative geometry. I: Dixmier trace in von Neumann algebras”, Adv. Math., 199:1 (2006), 29–87 | DOI | MR | Zbl

[23] A. L. Carey, J. Phillips, “Unbounded Fredholm modules and spectral flow”, Canad. J. Math., 50:4 (1998), 673–718 | MR | Zbl

[24] A. L. Carey, J. Phillips, “Spectral flow in Fredholm modules, eta invariants and the JLO cocycle”, K-Theory, 31:2 (2004), 135–194 | DOI | MR | Zbl

[25] A. L. Carey, J. Phillips, A. Rennie, F. A. Sukochev, “The Hochschild class of the Chern character for semifinite spectral triples”, J. Funct. Anal., 213:1 (2004), 111–153 | DOI | MR | Zbl

[26] A. L. Carey, J. Phillips, A. Rennie, F. A. Sukochev, “The local index formula in semifinite von Neumann algebras. I: Spectral flow”, Adv. Math., 202:2 (2006), 451–516 | DOI | MR | Zbl

[27] A. L. Carey, J. Phillips, A. Rennie, F. Sukochev, “The local index formula in semifinite von Neumann algebras. II: The even case”, Adv. Math., 202:2 (2006), 517–554 | DOI | MR | Zbl

[28] A. L. Carey, J. Phillips, F. A. Sukochev, “On unbounded $p$-summable Fredholm modules”, Adv. Math., 151:2 (2000), 140–163 | DOI | MR | Zbl

[29] A. L. Carey, J. Phillips, F. A. Sukochev, “Spectral flow and Dixmier traces”, Adv. Math., 173:1 (2003), 68–113 | DOI | MR | Zbl

[30] A. Connes, “Geometry from the spectral point of view”, Lett. Math. Phys., 34:3 (1995), 203–238 | DOI | MR | Zbl

[31] P. G. Dodds, B. de Pagter, E. M. Semenov, F. A. Sukochev, “Symmetric functionals and singular traces”, Positivity, 2:1 (1998), 47–75 | DOI | MR | Zbl

[32] K. Dykema, T. Figiel, G. Weiss, M. Wodzicki, “Commutator structure of operator ideals”, Adv. Math., 185:1 (2004), 1–79 | DOI | MR | Zbl

[33] D. Guido, T. Isola, “Singular traces for semifinite von Neumann algebras”, J. Funct. Anal., 134:2 (1995), 451–485 | DOI | MR | Zbl

[34] D. Guido, T. Isola, “On the domain of singular traces”, Internat. J. Math., 13:6 (2002), 667–674 | DOI | MR | Zbl

[35] N. Kalton, F. Sukochev, “Rearrangement invariant functionals with applications to traces on symmetrically normed ideals”, Canad. Math. Bull., 51:1 (2008), 67–80 (to appear) | MR

[36] R. Prinzis, Traces residuelles et asymptotique du spectre d'operateurs pseudo-differentiels, Thèse, Université de Lyon, 1994

[37] D. Guido, T. Isola, “Dimensions and singular traces for spectral triples, with applications to fractals”, J. Funct. Anal., 203:2 (2003), 362–400 | DOI | MR | Zbl

[38] D. Guido, T. Isola, “Singular traces and their applications to geometry”, Operator algebras and quantum field theory (Rome, 1996), Internat. Press, Cambridge, MA, 1997, 440–456 | MR | Zbl

[39] F. A. Sukochev, “Operator estimates for Fredholm modules”, Canad. J. Math., 52:4 (2000), 849–896 | MR | Zbl

[40] P. G. Dodds, B. de Pagter, A. A. Sedaev, E. M. Semenov, F. A. Sukochev, “Singulyarnye simmetrichnye funktsionaly”, Issledovaniya po lineinym operatoram i teorii funktsii, Zap. nauchn. sem. POMI, 290, 2002, 42–71 | MR | Zbl

[41] P. G. Dodds, B. Pagter, A. A. Sedaev, E. M. Semenov, F. A. Sukochev, “Singulyarnye simmetrichnye funktsionaly i banakhovy predely s dopolnitelnymi svoistvami invariantnosti”, Izv. RAN. Ser. matem., 67:6 (2003), 111–136 | MR | Zbl

[42] S. G. Krein, Yu. I. Petunin, E. M. Semenov, Interpolyatsiya lineinykh operatorov, Nauka, M., 1978 | MR | Zbl

[43] J. Lindenstrauss, L. Tzafriri, Classical Banach spaces. I: Sequence spaces, Ergeb. Math. Grenzgeb., 92, Springer-Verlag, Berlin, 1977 | MR | Zbl

[44] J. Lindenstrauss, L. Tzafriri, Classical Banach spaces. II: Function spaces, Ergeb. Math. Grenzgeb., 97, Springer-Verlag, Berlin, 1979 | MR | Zbl

[45] M. Sh. Braverman, A. A. Mekler, “Svoistvo Khardi–Litlvuda dlya simmetrichnykh prostranstv”, Sib. matem. zhurn., 18:3 (1977), 522–540 | MR | Zbl

[46] U. Rudin, Osnovy matematicheskogo analiza, Mir, M., 1976 | MR | Zbl

[47] T. Fack, H. Kosaki, “Generalized $s$-numbers of $\tau$-measurable operators”, Pacific J. Math., 123:2 (1986), 269–300 | MR | Zbl

[48] T. Fack, “Sur la notion de valeur caractéristique”, J. Operator Theory, 7:2 (1982), 307–333 | MR | Zbl

[49] I. Ts. Gokhberg, M. G. Krein, Vvedenie v teoriyu lineinykh nesamosopryazhennykh operatorov v gilbertovom prostranstve, Nauka, M., 1965 | MR | Zbl

[50] F. A. Sukochev, V. I. Chilin, “Simmetrichnye prostranstva na polukonechnykh algebrakh fon Neimana”, Dokl. AN SSSR, 313:4 (1990), 811–815 | MR | Zbl

[51] V. I. Chilin, F. A. Sukochev, “Weak convergence in non-commutative symmetric spaces”, J. Operator Theory, 31:1 (1994), 35–65 | MR | Zbl

[52] P. G. Dodds, T. K. Dodds, B. de Pagter, “Fully symmetric operator spaces”, Integral Equations Operator Theory, 15:6 (1992), 942–972 | DOI | MR | Zbl

[53] P. G. Dodds, T. K.-Y. Dodds, B. de Pagter, “Non-commutative Banach function spaces”, Math. Z., 201:4 (1989), 583–597 | DOI | MR | Zbl

[54] N. Kalton, “Spectral characterization of sums of commutators, I”, J. Reine Angew. Math., 504 (1998), 115–125 | MR | Zbl

[55] K. J. Dykema, N. J. Kalton, “Spectral characterization of sums of commutators, II”, J. Reine Angew. Math., 504 (1998), 127–137 | MR | Zbl

[56] K. J. Dykema, N. J. Kalton, “Sums of commutators in ideals and modules of type II factors”, Ann. Inst. Fourier (Grenoble), 55:3 (2005), 931–971 | MR | Zbl

[57] T. Fack, “Sums of commutators in non-commutative Banach function spaces”, J. Funct. Anal., 207:2 (2004), 358–398 | DOI | MR | Zbl

[58] G. G. Lorentz, “A contribution to the theory of divergent sequences”, Acta Math., 80:1 (1960), 167–190 | DOI | MR | Zbl

[59] M. Rid, B. Saimon, Metody sovremennoi matematicheskoi fiziki. T 1: Funktsionalnyi analiz, Mir, M., 1977 | MR | MR | Zbl

[60] S. Lord, A. Sedaev, F. Sukochev, “Dixmier traces as singular symmetric functionals and applications to measurable operators”, J. Funct. Anal., 224:1 (2005), 72–106 | MR | Zbl

[61] F. Cipriani, D. Guido, S. Scarlatti, “A remark on trace properties of $K$-cycles”, J. Operator Theory, 35:1 (1996), 179–189 | MR | Zbl

[62] J. V. Varga, “Traces on irregular ideals”, Proc. Amer. Math. Soc., 107:3 (1989), 715–723 | DOI | MR | Zbl

[63] G. Khardi, Raskhodyaschiesya ryady, IL, M., 1951 | MR | MR | Zbl

[64] L. Sucheston, “Banach limits”, Amer. Math. Monthly, 74 (1967), 308–311 | DOI | MR | Zbl

[65] A. Connes, “Entire cyclic cohomology of Banach algebras and characters of $\theta$-summable Fredholm modules”, K-Theory, 1:6 (1988), 519–548 | DOI | MR | Zbl

[66] A. Connes, “Compact metric spaces, Fredholm modules, and hyperfiniteness”, Ergodic Theory Dynam. Systems, 9:2 (1989), 207–220 | DOI | MR | Zbl

[67] A. Connes, “Non-commutative differential geometry”, Inst. Hautes Études Sci. Publ. Math., 62 (1985), 41–144 | DOI | MR | Zbl

[68] M. F. Atiyah, V. K. Patodi, I. M. Singer, “Spectral asymmetry and Riemannian geometry, I”, Math. Proc. Cambridge Philos. Soc., 77 (1975), 43–69 | DOI | MR | Zbl

[69] M. F. Atiyah, V. K. Patodi, I. M. Singer, “Spectral asymmetry and Riemannian geometry, III”, Math. Proc. Cambridge Philos. Soc., 79:1 (1976), 71–99 | DOI | MR | Zbl

[70] E. Schrohe, M. Walze, J.-M. Warzecha, “Construction de triplets spectraux à partir de modules de Fredholm”, C. R. Acad. Sci. Paris Sér. I Math., 326:10 (1998), 1195–1199 | DOI | MR | Zbl

[71] A. Rennie, “Smoothness and locality for nonunital spectral triples”, K-Theory, 28:2 (2003), 127–165 | DOI | MR | Zbl

[72] J. Phillips, “Self-adjoint Fredholm operators and spectral flow”, Canad. Math. Bull., 39:4 (1996), 460–467 | MR | Zbl

[73] J. Phillips, “Spectral flow in type I and type II factors—a new approach”, Cyclic cohomology and noncommutative geometry (Waterloo, ON, 1995), Fields Inst. Commun., 17, Amer. Math. Soc., Providence, RI, 1997, 137–153 | MR | Zbl

[74] J. Phillips, I. Raeburn, “An index theorem for Toeplitz operators with noncommutative symbol space”, J. Funct. Anal., 120:2 (1994), 239–263 | DOI | MR | Zbl

[75] M. Breuer, “Fredholm theories in von Neumann algebras, I”, Math. Ann., 178 (1968), 243–254 | DOI | MR | Zbl

[76] M. Breuer, “Fredholm theories in von Neumann algebras, II”, Math. Ann., 180:4 (1969), 313–325 | DOI | MR | Zbl

[77] V. S. Perera, Real-valued spectral flow in type $II_\infty$ factor, Ph.D. Thesis, IUPUI, Indianapolis, 1993

[78] V. S. Perera, “Real-valued spectral flow”, Multivariable operator theory (Seattle, WA, 1993), Contemp. Math., 185, Amer. Math. Soc., Providence, RI, 1995, 307–318 | MR | Zbl

[79] M. T. Benameur, A. L. Carey, J. Phillips, A. Rennie, F. A. Sukochev, K. P. Wojciechowski, “An analytic approach to spectral flow in von Neumann algebras”, Analysis, geometry and topology of elliptic operators, Papers in honor of Krzysztof P. Wojciechowski, Proceedings of a workshop (Roskilde, 2005), eds. B. Booß-Bavnbek et al., World Scientific, Singapore, 2006, 297–352 | MR | Zbl

[80] B. Booß-Bavnbek, M. Lesch, J. Phillips, “Unbounded Fredholm operators and spectral Flow”, Canad. J. Math., 57:2 (2005), 225–250 | MR | Zbl

[81] V. Mathai, “Spectral flow, eta invariants, and von Neumann algebras”, J. Funct. Anal., 109:2 (1992), 442–456 | DOI | MR | Zbl

[82] V. S. Perera, “Real valued spectral flow in a type II$_\infty$ factor”, Houston J. Math., 25:1 (1999), 55–66 | MR | Zbl

[83] E. Getzler, “The odd Chern character in cyclic homology and spectral flow”, Topology, 32:3 (1993), 489–507 | DOI | MR | Zbl

[84] J.-L. Loday, Cyclic homology, Grundlehren Math. Wiss., 301, Springer-Verlag, Berlin, 1998 | MR | Zbl

[85] A. Connes, H. Moscovici, “The local index formula in noncommutative geometry”, Geom. Funct. Anal., 5:2 (1995), 174–243 | DOI | MR | Zbl

[86] U. Bratteli, D. Robinson, Operatornye algebry i kvantovaya statisticheskaya mekhanika: $C^*$- i $W^*$-algebry. Gruppy simmetrii. Razlozhenie sostoyanii, Mir, M., 1982 | MR | MR | Zbl

[87] L. A. Coburn, R. G. Douglas, D. G. Schaeffer, I. M. Singer, “$C^*$-algebras of operators on a half-space. II: Index theory”, Inst. Hautes Études Sci. Publ. Math., 40 (1971), 69–79 | DOI | MR | Zbl

[88] M. Lesch, “On the index of the infinitesimal generator of a flow”, J. Operator Theory, 26:1 (1991), 73–92 | MR | Zbl

[89] N. Higson, “The local index formula in noncommutative geometry”, Contemporary developments in algebraic $K$-theory, ICTP Lect. Notes, XV, Abdus Salam Int. Cent. Theoret. Phys., Trieste, 2004, 443–536 | MR | Zbl

[90] A. Connes, “Sur la théorie non commutative de l'intégration”, Algèbres d'opérateurs (Les Plans-sur-Bex, 1978), Lecture Notes in Math., 725, Springer-Verlag, Berlin, 1979, 19–143 | MR | Zbl

[91] M. A. Shubin, “Psevdodifferentsialnye pochti-periodicheskie operatory i algebry fon Neimana”, Tr. MMO, 35, 1976, 103–164 | MR | Zbl

[92] M. A. Shubin, “Spektralnaya teoriya i indeks ellipticheskikh operatorov s pochti periodicheskimi koeffitsientami”, UMN, 34:2 (1979), 95–135 | MR | Zbl

[93] J. Dixmier, Les algèbres d'opérateurs dans l'espace hilbertien (algèbres de von Neumann), Cahier Scientifiques, XXV, Gauthier-Villars, Paris, 1969 | MR | Zbl

[94] M. Farber, S. Weinberger, “On the zero-in-the-spectrum conjecture”, Ann. of Math. (2), 154:1 (2001), 139–154 | DOI | MR | Zbl

[95] L. G. Brown, “Lidskii's theorem in the type II case”, Geometric methods in operator algebras (Kyoto, 1983), Pitman Res. Notes Math. Ser., 123, Longman Sci. Tech., Harlow, 1986, 1–35 | MR | Zbl