@article{RM_2006_61_6_a1,
author = {A. L. Carey and F. A. Sukochev},
title = {Dixmier traces and some applications in non-commutative geometry},
journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
pages = {1039--1099},
year = {2006},
volume = {61},
number = {6},
language = {en},
url = {http://geodesic.mathdoc.fr/item/RM_2006_61_6_a1/}
}
TY - JOUR AU - A. L. Carey AU - F. A. Sukochev TI - Dixmier traces and some applications in non-commutative geometry JO - Trudy Matematicheskogo Instituta imeni V.A. Steklova PY - 2006 SP - 1039 EP - 1099 VL - 61 IS - 6 UR - http://geodesic.mathdoc.fr/item/RM_2006_61_6_a1/ LA - en ID - RM_2006_61_6_a1 ER -
A. L. Carey; F. A. Sukochev. Dixmier traces and some applications in non-commutative geometry. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 61 (2006) no. 6, pp. 1039-1099. http://geodesic.mathdoc.fr/item/RM_2006_61_6_a1/
[1] J. Dixmier, “Existence de traces non normales”, C. R. Acad. Sci. Paris Sér. A, 262 (1966), 1107–1108 | MR | Zbl
[2] A. Connes, “The action functional in non-commutative geometry”, Comm. Math. Phys., 117:4 (1988), 673–683 | DOI | MR | Zbl
[3] M. Wodzicki, “Noncommutative residue. I: Fundamentals”, $K$-theory, arithmetic and geometry (Moscow, 1984–1986), Lecture Notes in Math., 1289, Springer-Verlag, Berlin, 1987, 320–399 | MR | Zbl
[4] M. Adler, “On a trace functional for formal pseudo-differential operators and the symplectic structure of the Korteweg–de Vries type equations”, Invent. Math., 50:3 (1978), 219–248 | DOI | MR
[5] Yu. I. Manin, “Algebraicheskie aspekty nelineinykh differentsialnykh uravnenii”, Itogi nauki i tekhniki. Sovrem. problemy matem., 11, VINITI, M., 1978, 5–152 | MR | Zbl
[6] V. Guillemin, “A new proof of Weyl's formula on the asymptotic distribution of eigenvalues”, Adv. Math., 55:2 (1985), 131–160 | DOI | MR | Zbl
[7] A. Connes, Noncommutative geometry, Academic Press, San Diego, CA, 1994 | MR | Zbl
[8] J. M. Gracia-Bondía, J. C. Várilly, H. Figueroa, Elements of noncommutative geometry, Birkhäuser Advanced Texts: Basler Lehrbücher, Birkhäuser, Boston, MA, 2001 | MR | Zbl
[9] A. Connes, “Essay on physics and noncommutative geometry”, The interface of mathematics and particle physics (Oxford, 1988), Inst. Math. Appl. Conf. Ser. New Ser., 24, Oxford Univ. Press, New York, 1990, 9–48 | MR
[10] A. Connes, J. Lott, “Particle models and noncommutative geometry”, Recent advances in field theory (Annecy-le-Vieux, 1990), Nuclear Phys. B Proc. Suppl., 18 (1991), 29–47 | DOI | MR | Zbl
[11] A. Connes, “Noncommutative geometry and reality”, J. Math. Phys., 36:11 (1995), 6194–6231 | DOI | MR | Zbl
[12] W. Kalau, “Hamilton formalism in non-commutative geometry”, J. Geom. Phys., 18:4 (1996), 349–380 | DOI | MR | Zbl
[13] D. Kastler, “Noncommutative geometry and basic physics”, Geometry and quantum physics (Schladming, 1999), Lecture Notes in Phys., 543, Springer, Berlin, 2000, 131–230 | MR | Zbl
[14] D. Kastler, “Noncommutative geometry and fundamental physical interaction: The Lagrangian level – historical sketch and description of the present situation”, J. Math. Phys., 41:6 (2000), 3867–3891 | DOI | MR | Zbl
[15] A. Connes, “Trace de Dixmier, modules de Fredholm et géométrie riemannienne”, Conformal field theories and related topics (Annecy-le-Vieux, 1988), Nuclear Phys. B Proc. Suppl., 5:2 (1988), 65–70 | DOI | MR | Zbl
[16] A. Connes, “Gravity coupled with matter and the foundation of non-commutative geometry”, Comm. Math. Phys., 182:1 (1996), 155–176 | DOI | MR | Zbl
[17] M. F. Atiyah, “Elliptic operators, discrete groups and von Neumann algebras”, Colloque “Analyse et Topologie” en l'honneur de Henri Cartan (Orsay, 1974), Astérisque, 32–33, Soc. Math. France, Paris, 1976, 43–72 | MR | Zbl
[18] S. Albeverio, D. Guido, A. Ponosov, S. Scarlatti, “Singular traces and compact operators”, J. Funct. Anal., 137:2 (1996), 281–302 | DOI | MR | Zbl
[19] S. Albeverio, D. Guido, A. Ponosov, S. Scarlatti, “Singular traces and nonstandard analysis”, Advances in analysis, probability and mathematical physics (Blaubeuren, 1992), Math. Appl., 314, Kluwer, Dordrecht, 1995, 3–19 | MR | Zbl
[20] S. Albeverio, D. Guido, A. Ponosov, S. Scarlatti, “Nonstandard representation of nonnormal traces”, Dynamics of complex and irregular systems (Bielefeld, 1991), Bielefeld Encount. Math. Phys., VIII, World Scientific, River Edge, NJ, 1993, 1–11 | MR
[21] N. A. Azamov, F. A. Sukochev, “A Lidskii type formula for Dixmier traces”, C. R. Math. Acad. Sci. Paris, 340:2 (2005), 107–112 | DOI | MR | Zbl
[22] M.-T. Benameur, T. Fack, “Type II non-commutative geometry. I: Dixmier trace in von Neumann algebras”, Adv. Math., 199:1 (2006), 29–87 | DOI | MR | Zbl
[23] A. L. Carey, J. Phillips, “Unbounded Fredholm modules and spectral flow”, Canad. J. Math., 50:4 (1998), 673–718 | MR | Zbl
[24] A. L. Carey, J. Phillips, “Spectral flow in Fredholm modules, eta invariants and the JLO cocycle”, K-Theory, 31:2 (2004), 135–194 | DOI | MR | Zbl
[25] A. L. Carey, J. Phillips, A. Rennie, F. A. Sukochev, “The Hochschild class of the Chern character for semifinite spectral triples”, J. Funct. Anal., 213:1 (2004), 111–153 | DOI | MR | Zbl
[26] A. L. Carey, J. Phillips, A. Rennie, F. A. Sukochev, “The local index formula in semifinite von Neumann algebras. I: Spectral flow”, Adv. Math., 202:2 (2006), 451–516 | DOI | MR | Zbl
[27] A. L. Carey, J. Phillips, A. Rennie, F. Sukochev, “The local index formula in semifinite von Neumann algebras. II: The even case”, Adv. Math., 202:2 (2006), 517–554 | DOI | MR | Zbl
[28] A. L. Carey, J. Phillips, F. A. Sukochev, “On unbounded $p$-summable Fredholm modules”, Adv. Math., 151:2 (2000), 140–163 | DOI | MR | Zbl
[29] A. L. Carey, J. Phillips, F. A. Sukochev, “Spectral flow and Dixmier traces”, Adv. Math., 173:1 (2003), 68–113 | DOI | MR | Zbl
[30] A. Connes, “Geometry from the spectral point of view”, Lett. Math. Phys., 34:3 (1995), 203–238 | DOI | MR | Zbl
[31] P. G. Dodds, B. de Pagter, E. M. Semenov, F. A. Sukochev, “Symmetric functionals and singular traces”, Positivity, 2:1 (1998), 47–75 | DOI | MR | Zbl
[32] K. Dykema, T. Figiel, G. Weiss, M. Wodzicki, “Commutator structure of operator ideals”, Adv. Math., 185:1 (2004), 1–79 | DOI | MR | Zbl
[33] D. Guido, T. Isola, “Singular traces for semifinite von Neumann algebras”, J. Funct. Anal., 134:2 (1995), 451–485 | DOI | MR | Zbl
[34] D. Guido, T. Isola, “On the domain of singular traces”, Internat. J. Math., 13:6 (2002), 667–674 | DOI | MR | Zbl
[35] N. Kalton, F. Sukochev, “Rearrangement invariant functionals with applications to traces on symmetrically normed ideals”, Canad. Math. Bull., 51:1 (2008), 67–80 (to appear) | MR
[36] R. Prinzis, Traces residuelles et asymptotique du spectre d'operateurs pseudo-differentiels, Thèse, Université de Lyon, 1994
[37] D. Guido, T. Isola, “Dimensions and singular traces for spectral triples, with applications to fractals”, J. Funct. Anal., 203:2 (2003), 362–400 | DOI | MR | Zbl
[38] D. Guido, T. Isola, “Singular traces and their applications to geometry”, Operator algebras and quantum field theory (Rome, 1996), Internat. Press, Cambridge, MA, 1997, 440–456 | MR | Zbl
[39] F. A. Sukochev, “Operator estimates for Fredholm modules”, Canad. J. Math., 52:4 (2000), 849–896 | MR | Zbl
[40] P. G. Dodds, B. de Pagter, A. A. Sedaev, E. M. Semenov, F. A. Sukochev, “Singulyarnye simmetrichnye funktsionaly”, Issledovaniya po lineinym operatoram i teorii funktsii, Zap. nauchn. sem. POMI, 290, 2002, 42–71 | MR | Zbl
[41] P. G. Dodds, B. Pagter, A. A. Sedaev, E. M. Semenov, F. A. Sukochev, “Singulyarnye simmetrichnye funktsionaly i banakhovy predely s dopolnitelnymi svoistvami invariantnosti”, Izv. RAN. Ser. matem., 67:6 (2003), 111–136 | MR | Zbl
[42] S. G. Krein, Yu. I. Petunin, E. M. Semenov, Interpolyatsiya lineinykh operatorov, Nauka, M., 1978 | MR | Zbl
[43] J. Lindenstrauss, L. Tzafriri, Classical Banach spaces. I: Sequence spaces, Ergeb. Math. Grenzgeb., 92, Springer-Verlag, Berlin, 1977 | MR | Zbl
[44] J. Lindenstrauss, L. Tzafriri, Classical Banach spaces. II: Function spaces, Ergeb. Math. Grenzgeb., 97, Springer-Verlag, Berlin, 1979 | MR | Zbl
[45] M. Sh. Braverman, A. A. Mekler, “Svoistvo Khardi–Litlvuda dlya simmetrichnykh prostranstv”, Sib. matem. zhurn., 18:3 (1977), 522–540 | MR | Zbl
[46] U. Rudin, Osnovy matematicheskogo analiza, Mir, M., 1976 | MR | Zbl
[47] T. Fack, H. Kosaki, “Generalized $s$-numbers of $\tau$-measurable operators”, Pacific J. Math., 123:2 (1986), 269–300 | MR | Zbl
[48] T. Fack, “Sur la notion de valeur caractéristique”, J. Operator Theory, 7:2 (1982), 307–333 | MR | Zbl
[49] I. Ts. Gokhberg, M. G. Krein, Vvedenie v teoriyu lineinykh nesamosopryazhennykh operatorov v gilbertovom prostranstve, Nauka, M., 1965 | MR | Zbl
[50] F. A. Sukochev, V. I. Chilin, “Simmetrichnye prostranstva na polukonechnykh algebrakh fon Neimana”, Dokl. AN SSSR, 313:4 (1990), 811–815 | MR | Zbl
[51] V. I. Chilin, F. A. Sukochev, “Weak convergence in non-commutative symmetric spaces”, J. Operator Theory, 31:1 (1994), 35–65 | MR | Zbl
[52] P. G. Dodds, T. K. Dodds, B. de Pagter, “Fully symmetric operator spaces”, Integral Equations Operator Theory, 15:6 (1992), 942–972 | DOI | MR | Zbl
[53] P. G. Dodds, T. K.-Y. Dodds, B. de Pagter, “Non-commutative Banach function spaces”, Math. Z., 201:4 (1989), 583–597 | DOI | MR | Zbl
[54] N. Kalton, “Spectral characterization of sums of commutators, I”, J. Reine Angew. Math., 504 (1998), 115–125 | MR | Zbl
[55] K. J. Dykema, N. J. Kalton, “Spectral characterization of sums of commutators, II”, J. Reine Angew. Math., 504 (1998), 127–137 | MR | Zbl
[56] K. J. Dykema, N. J. Kalton, “Sums of commutators in ideals and modules of type II factors”, Ann. Inst. Fourier (Grenoble), 55:3 (2005), 931–971 | MR | Zbl
[57] T. Fack, “Sums of commutators in non-commutative Banach function spaces”, J. Funct. Anal., 207:2 (2004), 358–398 | DOI | MR | Zbl
[58] G. G. Lorentz, “A contribution to the theory of divergent sequences”, Acta Math., 80:1 (1960), 167–190 | DOI | MR | Zbl
[59] M. Rid, B. Saimon, Metody sovremennoi matematicheskoi fiziki. T 1: Funktsionalnyi analiz, Mir, M., 1977 | MR | MR | Zbl
[60] S. Lord, A. Sedaev, F. Sukochev, “Dixmier traces as singular symmetric functionals and applications to measurable operators”, J. Funct. Anal., 224:1 (2005), 72–106 | MR | Zbl
[61] F. Cipriani, D. Guido, S. Scarlatti, “A remark on trace properties of $K$-cycles”, J. Operator Theory, 35:1 (1996), 179–189 | MR | Zbl
[62] J. V. Varga, “Traces on irregular ideals”, Proc. Amer. Math. Soc., 107:3 (1989), 715–723 | DOI | MR | Zbl
[63] G. Khardi, Raskhodyaschiesya ryady, IL, M., 1951 | MR | MR | Zbl
[64] L. Sucheston, “Banach limits”, Amer. Math. Monthly, 74 (1967), 308–311 | DOI | MR | Zbl
[65] A. Connes, “Entire cyclic cohomology of Banach algebras and characters of $\theta$-summable Fredholm modules”, K-Theory, 1:6 (1988), 519–548 | DOI | MR | Zbl
[66] A. Connes, “Compact metric spaces, Fredholm modules, and hyperfiniteness”, Ergodic Theory Dynam. Systems, 9:2 (1989), 207–220 | DOI | MR | Zbl
[67] A. Connes, “Non-commutative differential geometry”, Inst. Hautes Études Sci. Publ. Math., 62 (1985), 41–144 | DOI | MR | Zbl
[68] M. F. Atiyah, V. K. Patodi, I. M. Singer, “Spectral asymmetry and Riemannian geometry, I”, Math. Proc. Cambridge Philos. Soc., 77 (1975), 43–69 | DOI | MR | Zbl
[69] M. F. Atiyah, V. K. Patodi, I. M. Singer, “Spectral asymmetry and Riemannian geometry, III”, Math. Proc. Cambridge Philos. Soc., 79:1 (1976), 71–99 | DOI | MR | Zbl
[70] E. Schrohe, M. Walze, J.-M. Warzecha, “Construction de triplets spectraux à partir de modules de Fredholm”, C. R. Acad. Sci. Paris Sér. I Math., 326:10 (1998), 1195–1199 | DOI | MR | Zbl
[71] A. Rennie, “Smoothness and locality for nonunital spectral triples”, K-Theory, 28:2 (2003), 127–165 | DOI | MR | Zbl
[72] J. Phillips, “Self-adjoint Fredholm operators and spectral flow”, Canad. Math. Bull., 39:4 (1996), 460–467 | MR | Zbl
[73] J. Phillips, “Spectral flow in type I and type II factors—a new approach”, Cyclic cohomology and noncommutative geometry (Waterloo, ON, 1995), Fields Inst. Commun., 17, Amer. Math. Soc., Providence, RI, 1997, 137–153 | MR | Zbl
[74] J. Phillips, I. Raeburn, “An index theorem for Toeplitz operators with noncommutative symbol space”, J. Funct. Anal., 120:2 (1994), 239–263 | DOI | MR | Zbl
[75] M. Breuer, “Fredholm theories in von Neumann algebras, I”, Math. Ann., 178 (1968), 243–254 | DOI | MR | Zbl
[76] M. Breuer, “Fredholm theories in von Neumann algebras, II”, Math. Ann., 180:4 (1969), 313–325 | DOI | MR | Zbl
[77] V. S. Perera, Real-valued spectral flow in type $II_\infty$ factor, Ph.D. Thesis, IUPUI, Indianapolis, 1993
[78] V. S. Perera, “Real-valued spectral flow”, Multivariable operator theory (Seattle, WA, 1993), Contemp. Math., 185, Amer. Math. Soc., Providence, RI, 1995, 307–318 | MR | Zbl
[79] M. T. Benameur, A. L. Carey, J. Phillips, A. Rennie, F. A. Sukochev, K. P. Wojciechowski, “An analytic approach to spectral flow in von Neumann algebras”, Analysis, geometry and topology of elliptic operators, Papers in honor of Krzysztof P. Wojciechowski, Proceedings of a workshop (Roskilde, 2005), eds. B. Booß-Bavnbek et al., World Scientific, Singapore, 2006, 297–352 | MR | Zbl
[80] B. Booß-Bavnbek, M. Lesch, J. Phillips, “Unbounded Fredholm operators and spectral Flow”, Canad. J. Math., 57:2 (2005), 225–250 | MR | Zbl
[81] V. Mathai, “Spectral flow, eta invariants, and von Neumann algebras”, J. Funct. Anal., 109:2 (1992), 442–456 | DOI | MR | Zbl
[82] V. S. Perera, “Real valued spectral flow in a type II$_\infty$ factor”, Houston J. Math., 25:1 (1999), 55–66 | MR | Zbl
[83] E. Getzler, “The odd Chern character in cyclic homology and spectral flow”, Topology, 32:3 (1993), 489–507 | DOI | MR | Zbl
[84] J.-L. Loday, Cyclic homology, Grundlehren Math. Wiss., 301, Springer-Verlag, Berlin, 1998 | MR | Zbl
[85] A. Connes, H. Moscovici, “The local index formula in noncommutative geometry”, Geom. Funct. Anal., 5:2 (1995), 174–243 | DOI | MR | Zbl
[86] U. Bratteli, D. Robinson, Operatornye algebry i kvantovaya statisticheskaya mekhanika: $C^*$- i $W^*$-algebry. Gruppy simmetrii. Razlozhenie sostoyanii, Mir, M., 1982 | MR | MR | Zbl
[87] L. A. Coburn, R. G. Douglas, D. G. Schaeffer, I. M. Singer, “$C^*$-algebras of operators on a half-space. II: Index theory”, Inst. Hautes Études Sci. Publ. Math., 40 (1971), 69–79 | DOI | MR | Zbl
[88] M. Lesch, “On the index of the infinitesimal generator of a flow”, J. Operator Theory, 26:1 (1991), 73–92 | MR | Zbl
[89] N. Higson, “The local index formula in noncommutative geometry”, Contemporary developments in algebraic $K$-theory, ICTP Lect. Notes, XV, Abdus Salam Int. Cent. Theoret. Phys., Trieste, 2004, 443–536 | MR | Zbl
[90] A. Connes, “Sur la théorie non commutative de l'intégration”, Algèbres d'opérateurs (Les Plans-sur-Bex, 1978), Lecture Notes in Math., 725, Springer-Verlag, Berlin, 1979, 19–143 | MR | Zbl
[91] M. A. Shubin, “Psevdodifferentsialnye pochti-periodicheskie operatory i algebry fon Neimana”, Tr. MMO, 35, 1976, 103–164 | MR | Zbl
[92] M. A. Shubin, “Spektralnaya teoriya i indeks ellipticheskikh operatorov s pochti periodicheskimi koeffitsientami”, UMN, 34:2 (1979), 95–135 | MR | Zbl
[93] J. Dixmier, Les algèbres d'opérateurs dans l'espace hilbertien (algèbres de von Neumann), Cahier Scientifiques, XXV, Gauthier-Villars, Paris, 1969 | MR | Zbl
[94] M. Farber, S. Weinberger, “On the zero-in-the-spectrum conjecture”, Ann. of Math. (2), 154:1 (2001), 139–154 | DOI | MR | Zbl
[95] L. G. Brown, “Lidskii's theorem in the type II case”, Geometric methods in operator algebras (Kyoto, 1983), Pitman Res. Notes Math. Ser., 123, Longman Sci. Tech., Harlow, 1986, 1–35 | MR | Zbl