Dixmier traces and some applications in non-commutative geometry
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 61 (2006) no. 6, pp. 1039-1099
Voir la notice de l'article provenant de la source Math-Net.Ru
This is a discussion of recent progress in the theory of singular traces
on ideals of compact operators, with emphasis on Dixmier traces
and their applications in non-commutative geometry. The starting
point is the book Non-commutative geometry by Alain Connes,
which contains several open problems and motivations for their
solutions. A distinctive feature of the exposition is a treatment
of operator ideals in general semifinite von Neumann algebras.
Although many of the results presented here have already appeared in
the literature, new and improved proofs are given in some cases.
The reader is referred to the table of contents below for an overview
of the topics considered.
@article{RM_2006_61_6_a1,
author = {A. L. Carey and F. A. Sukochev},
title = {Dixmier traces and some applications in non-commutative geometry},
journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
pages = {1039--1099},
publisher = {mathdoc},
volume = {61},
number = {6},
year = {2006},
language = {en},
url = {http://geodesic.mathdoc.fr/item/RM_2006_61_6_a1/}
}
TY - JOUR AU - A. L. Carey AU - F. A. Sukochev TI - Dixmier traces and some applications in non-commutative geometry JO - Trudy Matematicheskogo Instituta imeni V.A. Steklova PY - 2006 SP - 1039 EP - 1099 VL - 61 IS - 6 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/RM_2006_61_6_a1/ LA - en ID - RM_2006_61_6_a1 ER -
A. L. Carey; F. A. Sukochev. Dixmier traces and some applications in non-commutative geometry. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 61 (2006) no. 6, pp. 1039-1099. http://geodesic.mathdoc.fr/item/RM_2006_61_6_a1/