Zeta functions of orthogonal groups of integral positive-definite quadratic forms
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 61 (2006) no. 6, pp. 999-1038

Voir la notice de l'article provenant de la source Math-Net.Ru

This survey concerns representations of Hecke–Shimura rings of integral positive-definite quadratic forms on spaces of polynomial harmonic vectors, and the question of simultaneous diagonalization of the corresponding Hecke operators. Explicit relations are deduced between the zeta functions of the quadratic forms in 2 and 4 variables corresponding to the harmonic eigenvectors of genera 1 and 2, and the zeta functions of Hecke and Andrianov of theta series weighted by these eigenvectors, respectively. Similar questions for single-class quadratic forms were considered earlier in the paper [1]. The general situation is discussed in the paper [2].
@article{RM_2006_61_6_a0,
     author = {A. N. Andrianov},
     title = {Zeta functions of orthogonal groups of integral positive-definite quadratic forms},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {999--1038},
     publisher = {mathdoc},
     volume = {61},
     number = {6},
     year = {2006},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/RM_2006_61_6_a0/}
}
TY  - JOUR
AU  - A. N. Andrianov
TI  - Zeta functions of orthogonal groups of integral positive-definite quadratic forms
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2006
SP  - 999
EP  - 1038
VL  - 61
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/RM_2006_61_6_a0/
LA  - en
ID  - RM_2006_61_6_a0
ER  - 
%0 Journal Article
%A A. N. Andrianov
%T Zeta functions of orthogonal groups of integral positive-definite quadratic forms
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2006
%P 999-1038
%V 61
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/RM_2006_61_6_a0/
%G en
%F RM_2006_61_6_a0
A. N. Andrianov. Zeta functions of orthogonal groups of integral positive-definite quadratic forms. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 61 (2006) no. 6, pp. 999-1038. http://geodesic.mathdoc.fr/item/RM_2006_61_6_a0/