Zeta functions of orthogonal groups of integral positive-definite quadratic forms
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 61 (2006) no. 6, pp. 999-1038
Voir la notice de l'article provenant de la source Math-Net.Ru
This survey concerns representations
of Hecke–Shimura rings of integral positive-definite
quadratic forms on spaces of polynomial harmonic vectors, and
the question of simultaneous
diagonalization of the corresponding Hecke operators.
Explicit relations are deduced between the zeta functions of the
quadratic forms in 2 and 4 variables
corresponding to the harmonic eigenvectors
of genera 1 and 2, and the zeta functions of Hecke
and Andrianov of theta series weighted by these eigenvectors,
respectively. Similar questions for single-class quadratic forms
were considered earlier in the paper [1].
The general situation is discussed in the paper [2].
@article{RM_2006_61_6_a0,
author = {A. N. Andrianov},
title = {Zeta functions of orthogonal groups of integral positive-definite quadratic forms},
journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
pages = {999--1038},
publisher = {mathdoc},
volume = {61},
number = {6},
year = {2006},
language = {en},
url = {http://geodesic.mathdoc.fr/item/RM_2006_61_6_a0/}
}
TY - JOUR AU - A. N. Andrianov TI - Zeta functions of orthogonal groups of integral positive-definite quadratic forms JO - Trudy Matematicheskogo Instituta imeni V.A. Steklova PY - 2006 SP - 999 EP - 1038 VL - 61 IS - 6 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/RM_2006_61_6_a0/ LA - en ID - RM_2006_61_6_a0 ER -
A. N. Andrianov. Zeta functions of orthogonal groups of integral positive-definite quadratic forms. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 61 (2006) no. 6, pp. 999-1038. http://geodesic.mathdoc.fr/item/RM_2006_61_6_a0/