Zeta functions of orthogonal groups of integral positive-definite quadratic forms
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 61 (2006) no. 6, pp. 999-1038 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

This survey concerns representations of Hecke–Shimura rings of integral positive-definite quadratic forms on spaces of polynomial harmonic vectors, and the question of simultaneous diagonalization of the corresponding Hecke operators. Explicit relations are deduced between the zeta functions of the quadratic forms in 2 and 4 variables corresponding to the harmonic eigenvectors of genera 1 and 2, and the zeta functions of Hecke and Andrianov of theta series weighted by these eigenvectors, respectively. Similar questions for single-class quadratic forms were considered earlier in the paper [1]. The general situation is discussed in the paper [2].
@article{RM_2006_61_6_a0,
     author = {A. N. Andrianov},
     title = {Zeta functions of orthogonal groups of integral positive-definite quadratic forms},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {999--1038},
     year = {2006},
     volume = {61},
     number = {6},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/RM_2006_61_6_a0/}
}
TY  - JOUR
AU  - A. N. Andrianov
TI  - Zeta functions of orthogonal groups of integral positive-definite quadratic forms
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2006
SP  - 999
EP  - 1038
VL  - 61
IS  - 6
UR  - http://geodesic.mathdoc.fr/item/RM_2006_61_6_a0/
LA  - en
ID  - RM_2006_61_6_a0
ER  - 
%0 Journal Article
%A A. N. Andrianov
%T Zeta functions of orthogonal groups of integral positive-definite quadratic forms
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2006
%P 999-1038
%V 61
%N 6
%U http://geodesic.mathdoc.fr/item/RM_2006_61_6_a0/
%G en
%F RM_2006_61_6_a0
A. N. Andrianov. Zeta functions of orthogonal groups of integral positive-definite quadratic forms. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 61 (2006) no. 6, pp. 999-1038. http://geodesic.mathdoc.fr/item/RM_2006_61_6_a0/

[1] A. N. Andrianov, “O dzeta-funktsiyakh ortogonalnykh grupp odnoklassnykh polozhitelno-opredelennykh kvadratichnykh form”, Algebra i analiz, 17:4 (2005), 3–41 | MR | Zbl

[2] S. Rallis, “Langlands' functoriality and Weil representation”, Amer. J. Math., 104:3 (1982), 469–515 | DOI | MR | Zbl

[3] A. N. Andrianov, “Kvadratichnye sravneniya i ratsionalnost lokalnykh dzeta-ryadov ternarnykh i kvaternarnykh kvadratichnykh form”, Algebra i analiz, 6:2 (1994), 3–52 | MR | Zbl

[4] A. N. Andrianov, “Kompozitsiya reshenii kvadratichnykh diofantovykh uravnenii”, UMN, 46:2 (1991), 3–40 | MR | Zbl

[5] A. N. Andrianov, Queen's lectures on arithmetical composition of quadratic forms, Queen's Papers in Pure and Appl. Math., 92, Queen's Univ., Kingston, ON, 1992 | MR | Zbl

[6] A. N. Andrianov, “Garmonicheskie teta-funktsii i operatory Gekke”, Algebra i analiz, 8:5 (1996), 1–31 | MR | Zbl

[7] A. N. Andrianov, “Multiplikativnye svoistva reshenii kvadratichnykh diofantovykh zadach”, Algebra i analiz, 2:1 (1990), 3–46 | MR | Zbl

[8] J. W. S. Cassels, Rational quadratic forms, London Math. Soc. Monogr., 13, Academic Press, London, 1978 | MR | Zbl

[9] A. N. Andrianov, Quadratic forms and Hecke operators, Grundlehren Math. Wiss., 286, Berlin, Springer-Verlag, 1987 | MR | Zbl

[10] A. N. Andrianov, “Multiplikativnye razlozheniya tselochislennykh predstavlenii binarnykh kvadratichnykh form”, Algebra i analiz, 5:1 (1993), 81–108 | MR | Zbl

[11] M. Kashiwara, M. Vergne, “On the Segal–Shale–Weil representations and harmonic polynomials”, Invent. Math., 44:1 (1978), 1–47 | DOI | MR | Zbl

[12] E. Freitag, Singular modular forms and theta relations, Lecture Notes in Math., 1487, Springer-Verlag, Berlin, 1991 | MR | Zbl

[13] A. Ogg, Modular forms and Dirichlet series, W. A. Benjamin, New York, 1969 | MR | Zbl

[14] A. N. Andrianov, G. N. Maloletkin, “Povedenie teta-ryadov roda $n$ pri modulyarnykh podstanovkakh”, Izv. AN SSSR. Ser. matem., 39:2 (1975), 243–258 | MR | Zbl

[15] A. N. Andrianov, “Simmetrii garmonicheskikh teta-funktsii tselochislennykh kvadratichnykh form”, UMN, 50:4 (1995), 3–44 | MR | Zbl

[16] A. N. Andrianov, “Singulyarnye koltsa Gekke–Shimury i operatory Gekke na zigelevykh modulyarnykh formakh”, Algebra i analiz, 11:6 (1999), 1–68 | MR | Zbl

[17] A. N. Andrianov, A. A. Panchishkin, “Singulyarnye operatory Frobeniusa na zigelevykh modulyarnykh formakh s kharakterami i dzeta-funktsii”, Algebra i analiz, 12:2 (2000), 64–99 | MR | Zbl

[18] A. N. Andrianov, “On diagonalisation of singular Frobenius operators on Siegel modular forms”, Amer. J. Math., 125:1 (2003), 139–165 | DOI | MR | Zbl

[19] A. O. L. Atkin, J. Lehner, “Hecke operators om $\Gamma_0(m)$”, Math. Ann., 185:2 (1970), 134–160 | DOI | MR | Zbl

[20] W.-C. W. Li, “Newforms and functional equations”, Math. Ann., 212:4 (1975), 285–315 | DOI | MR | Zbl

[21] Z. I. Borevich, I. R. Shafarevich, Teoriya chisel, Nauka, M., 1964 | MR | Zbl

[22] J. Tate, Fourier analysis in number fields and Hecke's zeta functions, Ph.D. Thesis, Princeton Univ., Princeton, NJ, 1950