@article{RM_2006_61_5_a0,
author = {A. M. Vershik and M. I. Graev},
title = {Structure of the complementary series and special representations of the groups $O(n,1)$ and~$U(n,1)$},
journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
pages = {799--884},
year = {2006},
volume = {61},
number = {5},
language = {en},
url = {http://geodesic.mathdoc.fr/item/RM_2006_61_5_a0/}
}
TY - JOUR AU - A. M. Vershik AU - M. I. Graev TI - Structure of the complementary series and special representations of the groups $O(n,1)$ and $U(n,1)$ JO - Trudy Matematicheskogo Instituta imeni V.A. Steklova PY - 2006 SP - 799 EP - 884 VL - 61 IS - 5 UR - http://geodesic.mathdoc.fr/item/RM_2006_61_5_a0/ LA - en ID - RM_2006_61_5_a0 ER -
%0 Journal Article %A A. M. Vershik %A M. I. Graev %T Structure of the complementary series and special representations of the groups $O(n,1)$ and $U(n,1)$ %J Trudy Matematicheskogo Instituta imeni V.A. Steklova %D 2006 %P 799-884 %V 61 %N 5 %U http://geodesic.mathdoc.fr/item/RM_2006_61_5_a0/ %G en %F RM_2006_61_5_a0
A. M. Vershik; M. I. Graev. Structure of the complementary series and special representations of the groups $O(n,1)$ and $U(n,1)$. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 61 (2006) no. 5, pp. 799-884. http://geodesic.mathdoc.fr/item/RM_2006_61_5_a0/
[1] Yu. A. Neretin, G. I. Olshanskii, “Granichnye znacheniya golomorfnykh funktsii, osobye unitarnye predstavleniya grupp $O(p,q)$ i ikh predely pri $q\to\infty$”, Teoriya predstavlenii, dinamicheskie sistemy, kombinatornye i algoritmicheskie metody. I, Zapiski nauch. sem. POMI, 223, ed. A. M. Vershik, Nauka, SPb., 1995, 9–91 | MR | Zbl
[2] A. M. Vershik, S. I. Karpushev, “Kogomologii grupp v unitarnykh predstavleniyakh, okrestnost edinitsy i uslovno polozhitelno opredelennye funktsii”, Matem. sb., 119(161):4(12) (1982), 521–533 | MR | Zbl
[3] D. A. Kazhdan, “O svyazi dualnogo prostranstva gruppy so stroeniem ee zamknutykh podgrupp”, Funkts. analiz i ego prilozh., 1:1 (1967), 71–74 | MR | Zbl
[4] C. Delaroche, A. Kirillov, “Sur les relations entre l'espace dual d'un groupe et la structure de ses sous-groupes fermés”, Séminaire Bourbaki 1967/68, 20e année, exp. 343, Benjamin, 1969 | MR | MR | Zbl
[5] M. Bekka, P. de la Harpe, A. Valette, Kazhdan's property ($T$), New Math. Monogr., 11, Cambridge Univ. Press, Cambridge, 2008 | MR | Zbl
[6] Y. Shalom, “Rigidity, unitary representation of semisimple groups, and fundamental groups of manifolds with rank one transformation group”, Ann. of Math. (2), 152:1 (2000), 113–182 | DOI | MR | Zbl
[7] P. Delorme, “1-cohomologie des représentations unitaires des groupes de Lie semi-simples et résolubles. Produits tensoriels continues de représentations”, Bull. Soc. Math. France, 105:3 (1977), 281–336 | MR | Zbl
[8] R. S. Ismagilov, Representations of infinite-dimensional groups, Transl. Math. Monogr., 152, Amer. Math. Soc., Providence, RI, 1996 | MR | Zbl
[9] A. Gisharde, Kogomologii topologicheskikh grupp i algebr Li, Mir, M., 1984 | MR | MR | Zbl
[10] G. Kuhn, A. Vershik, “Canonical semigroups of states and cocycles for the group of automorphisms of a homogeneous tree”, Algebr. Represent. Theory, 6:3 (2003), 333–352 | DOI | MR | Zbl
[11] A. M. Vershik, I. M. Gelfand, M. I. Graev, “Neprivodimye predstavleniya gruppy $G^X$ i kogomologii”, Funkts. analiz i ego prilozh., 8:2 (1974), 67–69 | MR | Zbl
[12] J. Faraut, K. Harzallah, “Distances hilbertiennes invariantes sur un espace homogène”, Ann. Inst. Fourier (Grenoble), 24:3 (1974), 171–217 | MR | Zbl
[13] P. de la Harpe, A. Valette, La propriété $(T)$ de Kazhdan pour les groupes localement compacts, Astérisque, 175, Soc. Math. France, Paris, 1989 | MR | Zbl
[14] A. M. Vershik, I. M. Gelfand, M. I. Graev, “Predstavleniya gruppy $SL(2,\mathbf R)$, gde $\mathbf R$ – koltso funktsii”, UMN, 28:5 (1973), 83–128 | MR | Zbl
[15] A. Guichardet, “Représentations de $G^X$ selon Gelfand et Delorme”, Séminaire Bourbaki 1975/76, 28-e année, exp. 486, Lecture Notes in Math., 567, Springer, Berlin, 1977, 238–255 | MR | Zbl
[16] G. Segal, “Two papers on representation theory”, Representation theory, London Math. Soc. Lecture Note Series, 69, Cambridge Univ. Press, Cambridge, New York, 1982, 1–13 | MR | Zbl
[17] A. M. Vershik, I. M. Gelfand, M. I. Graev, “Kommutativnaya model osnovnogo predstavleniya gruppy $GL(2,\mathbb R)^X$ otnositelno unipotentnoi podgruppy”, Teoretiko-gruppovye metody v fizike, Trudy mezhdunarodn. sem., t. 2 (Zvenigorod, 1982), Nauka, M., 1983, 472–487 | MR | Zbl
[18] A. M. Vershik, I. M. Gelfand, M. I. Graev, “Kommutativnaya model predstavleniya gruppy tokov $SL(2,\mathbb R)^X$, svyazannaya s unipotentnoi podgruppoi”, Funkts. analiz i ego prilozh., 17:2 (1983), 70–72 | MR | Zbl
[19] A. M. Vershik, I. M. Gelfand, M. I. Graev, Kommutativnaya model osnovnogo predstavleniya gruppy $SL(2,\mathbb R)^X$ otnositelno unipotentnoi podgruppy, Preprint No 169, IPM AN SSSR, M., 1982 | MR
[20] I. M. Gel'fand, M. I. Graev, A. M. Vershik, “Models of representations of current groups”, Representations of Lie groups and Lie algebras (Budapest, 1971), Akad. Kiadó, Budapest, 1985, 121–179 | MR | Zbl
[21] A. M. Vershik, M. I. Graev, “Kommutativnaya model predstavleniya gruppy tokov $O(n,1)^X$ i obobschennaya lebegova mera v prostranstve raspredelenii”, Funkts. analiz i ego prilozh., 39:2 (2005), 1–12 | MR | Zbl
[22] M. I. Graev, A. M. Vershik, “The basic representation of the current group $O(n,1)^X$ in the $L^2$ space over the generalized Lebesgue measure”, Indag. Math. (N.S.), 16:3–4 (2005), 499–529 | DOI | Zbl
[23] I. M. Gelfand, M. I. Graev, “Osobye predstavleniya gruppy $SU(n,1)$ i proektivnye unitarnye predstavleniya gruppy tokov $SU(n,1)^X$”, Dokl. RAN, 332:3 (1993), 280–282 | MR | Zbl
[24] I. M. Gelfand, M. I. Graev, “Proektivnye neunitarnye predstavleniya grupp tokov”, Dokl. RAN, 338:3 (1994), 298–301 | MR | Zbl
[25] F. A. Berezin, “Predstavleniya nepreryvnogo pryamogo proizvedeniya universalnykh nakryvayuschikh gruppy dvizhenii kompleksnogo shara”, Tr. MMO, 36, 1978, 275–293 | MR | Zbl
[26] H. Araki, “Factorizable representations of the current algebra. Noncommutative extension of the Lévy–Khinchin formula and cohomology of a solvable group with values in a Hilbert space”, Publ. Res. Inst. Math. Sci. Ser. A, 5:3 (1969/70), 361–422 | DOI | MR | Zbl
[27] H. Araki, E. J. Woods, “Complete Boolean algebras of type I factors”, Publ. Res. Inst. Math. Sci. Ser. A, 2:2 (1966), 157–242 | DOI | MR | Zbl
[28] K. R. Parthasarathy, K. Schmidt, Infinitely divisible projective representations, cocycles, and Lévy–Khinchine–Araki formula on locally compact groups, Research Report No 17, Manchester–Sheffield School of Probability and Statistics, 1970
[29] K. R. Parthasarathy, K. Schmidt, “Factorisable representations of current groups and the Araki–Woods embedding theorem”, Acta Math., 128:1 (1972), 53–71 | DOI | MR | Zbl
[30] K. R. Parthasarathy, K. Schmidt, Positive definite kernels, continuous tensor products, and central limit theorems of probability theory, Lecture Notes in Math., 272, Springer-Verlag, Berlin, 1972 | MR | Zbl
[31] R. F. Streater, “Current communication relations, continuous tensor products, and infinitely divisible group representations”, Rend. Sci. Istit. Fis. E. Fermi, II (1969), 247–263
[32] R. F. Streater, “Infinitely divisible representations of Lie algebras”, Z. Wahrscheinlichkeitstheor. Verw. Geb., 19:1 (1971), 67–80 | DOI | MR | Zbl
[33] A. M. Vershik, I. M. Gelfand, M. I. Graev, Predstavleniya gruppy diffeomorfizmov, svyazannye s beskonechnymi konfiguratsiyami, Preprint No 46, IPM AN SSSR, M., 1975
[34] A. M. Vershik, I. M. Gelfand, M. I. Graev, “Predstavleniya gruppy diffeomorfizmov”, UMN, 30:6 (1975), 3–50 | MR | Zbl
[35] I. M. Gel'fand, M. I. Graev, “Principal representatons of the group $\operatorname{U}(\infty)$”, Representation of Lie groups and related topics, Adv. Stud. Contemp. Math., 7, Gordon and Breach, New York, 1990, 119–153 | MR | Zbl
[36] G. I. Olshanskii, “Sfericheskie funktsii i kharaktery na gruppe $U(\infty)$”, UMN, 37:2 (1982), 217–218 | MR | Zbl
[37] A. Guichardet, Symmetric Hilbert spaces and related topics. Infinitely divisible positive definite functions. Continuous products and tensor products. Gaussian and Poissonian stochastic processes, Lecture Notes in Math., 261, Springer-Verlag, Berlin, 1972 | MR | Zbl
[38] I. M. Gelfand, N. Ya. Vilenkin, Obobschennye funktsii. Vyp. 4. Nekotorye primeneniya garmonicheskogo analiza. Osnaschennye gilbertovy prostranstva, Fizmatgiz, M., 1961 | MR | Zbl
[39] F. A. Berezin, “Kvantovanie v kompleksnykh simmetricheskikh prostranstvakh”, Izv. AN SSSR. Ser. matem., 39:2 (1975), 363–402 | MR | Zbl
[40] N. Tsilevich., A. Vershik, M. Yor, “An infinite-dimensional analogue of the Lebesgue measure and distinguished properties of the gamma process”, J. Funct. Anal., 185:1 (2001), 274–296 | DOI | MR | Zbl
[41] I. M. Gelfand, M. I. Graev, N. Ya. Vilenkin, Obobschennye funktsii. Vyp. 5. Integralnaya geometriya i svyazannye s nei voprosy teorii predstavlenii, Fizmatgiz, M., 1962 | MR | Zbl
[42] I. M. Gelfand, M. I. Graev, I. I. Pyatetskii-Shapiro, Teoriya predstavlenii i avtomorfnye funktsii, Nauka, M., 1966 | MR | Zbl
[43] G. Beitmen, A. Erdeii, Vysshie transtsendentnye funktsii. [T. 1:] Giperbolicheskaya funktsiya. Funktsii Lezhandra, Nauka, M., 1973 ; [Рў. 2:] Функции Р‘РμСЃСЃРμля, функции параболичРμСЃРєРѕРіРѕ цилиндра, ортогональныРμ многочлРμРЅС‹, Наука, Рњ., 1974 | MR | MR | Zbl | MR | Zbl
[44] A. M. Perelomov, Obobschennye kogerentnye sostoyaniya i ikh primeneniya, Nauka, M., 1987 | MR | Zbl
[45] G. Beitmen, A. Erdeii, Tablitsy integralnykh preobrazovanii. T. 1: Preobrazovaniya Fure, Laplasa, Mellina, Nauka, M., 1969 | MR | MR | Zbl
[46] M. I. Graev, “Unitarnye predstavleniya veschestvennykh prostykh grupp Li”, Tr. MMO, 7, 1958, 335–389 | MR | Zbl
[47] M. I. Graev, “Neprivodimye unitarnye predstavleniya gruppy matrits tretego poryadka, sokhranyayuschikh indefinitnuyu ermitovu formu”, Dokl. AN SSSR, 113:5 (1957), 966–969 | MR | Zbl
[48] F. A. Berezin, I. M. Gelfand, M. I. Graev, M. A. Naimark, “Predstavleniya grupp”, UMN, 11:6 (1956), 13–40 | MR | Zbl
[49] Khua Lo-ken, Garmonicheskii analiz funktsii mnogikh kompleksnykh peremennykh v klassicheskikh oblastyakh, IL, M., 1959 | MR | Zbl
[50] G. van Dijk, S. C. Hille, “Canonical representations related to hyperbolic spaces”, J. Funct. Anal., 147:1 (1997), 109–139 | DOI | MR | Zbl
[51] V. F. Molchanov, L. I. Grosheva, “Canonical and boundary representations on the Lobachevsky plane”, The 2000 Twente conference on Lie groups (Enschede), Acta Appl. Math., 73:1–2 (2002), 59–77 | DOI | MR | Zbl
[52] V. F. Molchanov, “Canonical representations on the two-sheeted hyperboloid”, Indag. Math., 16:3–4 (2005), 609–630 | DOI | MR | Zbl
[53] F. A. Berezin, “Kvantovanie”, Izv. AN SSSR. Ser. matem., 38:5 (1974), 1116–1175 | MR | Zbl
[54] I. S. Gradshtein, I. M. Ryzhik, Tablitsy integralov, summ, ryadov i proizvedenii, Fizmatgiz, M., 1962 | MR | Zbl