@article{RM_2006_61_4_a4,
author = {P. B. Djakov and B. S. Mityagin},
title = {Instability zones of periodic 1-dimensional {Schr\"odinger} and {Dirac} operators},
journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
pages = {663--766},
year = {2006},
volume = {61},
number = {4},
language = {en},
url = {http://geodesic.mathdoc.fr/item/RM_2006_61_4_a4/}
}
TY - JOUR AU - P. B. Djakov AU - B. S. Mityagin TI - Instability zones of periodic 1-dimensional Schrödinger and Dirac operators JO - Trudy Matematicheskogo Instituta imeni V.A. Steklova PY - 2006 SP - 663 EP - 766 VL - 61 IS - 4 UR - http://geodesic.mathdoc.fr/item/RM_2006_61_4_a4/ LA - en ID - RM_2006_61_4_a4 ER -
P. B. Djakov; B. S. Mityagin. Instability zones of periodic 1-dimensional Schrödinger and Dirac operators. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 61 (2006) no. 4, pp. 663-766. http://geodesic.mathdoc.fr/item/RM_2006_61_4_a4/
[1] I. M. Gelfand, B. M. Levitan, “Ob opredelenii differentsialnogo uravneniya po ego spektralnoi funktsii”, Dokl. AN SSSR, 77:4 (1951), 557–560 | MR | Zbl
[2] M. J. Ablowitz, D. J. Kaup, A. C. Newell, H. Segur, “The inverse scattering transform – Fourier analysis for nonlinear problems”, Stud. Appl. Math., 53:4 (1974), 249–315 | MR | Zbl
[3] B. A. Dubrovin, V. A. Matveev, S. P. Novikov, “Nelineinye uravneniya tipa Kortevega–de Friza, konechnozonnye lineinye operatory i abelevy mnogoobraziya”, UMN, 31:1 (1976), 55–136 | MR | Zbl
[4] B. A. Dubrovin, I. M. Krichever, S. P. Novikov, “Integriruemye sistemy. I”, Dinamicheskie sistemy – 4, Itogi nauki i tekhniki. Sovrem. problemy matem. Fund. napr., 4, VINITI, M., 1985, 179–285 | MR | Zbl
[5] C. S. Gardner, J. M. Greene, M. D. Kruskal, R. M. Miura, “Method for solving the Korteweg–de Vries equation”, Phys. Rev. Lett., 19 (1967), 1095–1097 | DOI | Zbl
[6] C. S. Gardner, J. M. Greene, M. D. Kruskal, R. M. Miura, “Korteweg–de Vries equation and generalization. VI. Method for exact solution”, Comm. Pure Appl. Math., 27 (1974), 97–133 | DOI | MR | Zbl
[7] S. P. Novikov, “Periodicheskaya zadacha dlya uravneniya Kortevega–de Friza. I”, Funkts. analiz i ego prilozh., 8:3 (1974), 54–66 | MR | Zbl
[8] V. E. Zakharov, A. B. Shabat, “Skhema integrirovaniya nelineinykh uravnenii matematicheskoi fiziki metodom obratnoi zadachi rasseyaniya. I”, Funkts. analiz i ego prilozh., 8:3 (1974), 43–53 | MR | Zbl
[9] H. Hochstadt, “Estimates of the stability intervals for Hill's equation”, Proc. Amer. Math. Soc., 14 (1963), 930–932 | DOI | MR | Zbl
[10] H. Hochstadt, “On the determination of a Hill's equation from its spectrum”, Arch. Rational Mech. Anal., 19 (1965), 353–362 | DOI | MR | Zbl
[11] V. F. Lazutkin, T. F. Pankratova, “Asimptotika shiriny lakun v spektre operatora Shturma–Liuvillya s periodicheskim potentsialom”, Dokl. AN SSSR, 215:5 (1974), 1048–1051 | MR | Zbl
[12] V. A. Marchenko, I. V. Ostrovskii, “Kharakteristika spektra operatora Khilla”, Matem. sb., 97 (139):4 (1975), 540–606 | MR | Zbl
[13] H. P. McKean, E. Trubowitz, “Hill's operator and hyperelliptic function theory in the presence of infinitely many branch points”, Comm. Pure Appl. Math., 29:2 (1976), 143–226 | DOI | MR | Zbl
[14] B. A. Dubrovin, “Obratnaya zadacha teorii rasseyaniya dlya periodicheskikh konechnozonnykh potentsialov”, Funkts. analiz i ego prilozh., 9:1 (1975), 65–66 | MR | Zbl
[15] E. Trubowitz, “The inverse problem for periodic potentials”, Comm. Pure Appl. Math., 30:3 (1977), 321–337 | DOI | MR | Zbl
[16] B. Grébert, T. Kappeler, B. Mityagin, “Gap estimates of the spectrum of the Zakharov–Shabat system”, Appl. Math. Lett., 11:4 (1998), 95–97 | DOI | MR | Zbl
[17] B. Grébert, T. Kappeler, “Estimates on periodic and Dirichlet eigenvalues for the Zakharov–Shabat system”, Asymptotic Anal., 25:3–4 (2001), 201–237 ; “Erratum”, Asymptotic Anal., 29:2 (2002), 183 | MR | Zbl | MR
[18] P. Djakov, B. Mityagin, “Spectra of 1-D periodic Dirac operators and smoothness of potentials”, C. R. Math. Acad. Sci. Soc. R. Can., 25:4 (2003), 121–125 | MR | Zbl
[19] P. Djakov, B. Mityagin, “Instability zones of a periodic 1D Dirac operator and smoothness of its potential”, Comm. Math. Phys., 259:1 (2005), 139–183 | DOI | MR | Zbl
[20] M. S. P. Eastham, The spectral theory of periodic differential operators, Scottish Academic Press, Edinburgh, 1973 | Zbl
[21] P. Kuchment, Floquet theory for partial differential equations, Oper. Theory Adv. Appl., 60, Birkhäuser, Basel, 1993 | MR | Zbl
[22] W. Magnus, S. Winkler, Hill's equation, Interscience Publishers, J. Wiley, New York, 1966 | MR | Zbl
[23] J. Weidmann, Spectral theory of ordinary differential operators, Lecture Notes in Math., 1258, Springer-Verlag, Berlin, 1987 | MR | Zbl
[24] E. L. Ince, “A linear differential equation with periodic coefficients”, Proc. London Math. Soc. (2), 23 (1924), 56–74 | DOI | Zbl
[25] E. M. Harrell II, “On the effect of the boundary conditions on the eigenvalues of ordinary differential equations”, Contributions to analysis and geometry (Baltimore, MD, 1980), Johns Hopkins Univ. Press, Baltimore, MD, 1981, 139–150 | MR | Zbl
[26] J. Avron, B. Simon, “The asymptotics of the gap in the Mathieu equation”, Ann. Physics, 134:1 (1981), 76–84 | DOI | MR | Zbl
[27] A. Liapounoff, “Sur une série dans la théorie des équations différentielles linéaires du second ordre à coefficients périodiques”, Zapiski Imperatorskoi akademii nauk po Fiziko-matematicheskomu otdeleniyu, 13:2 (1903) | Zbl
[28] P. Djakov, B. Mityagin, “Asymptotics of instability zones of Hill operators with a two term potential”, C. R. Math. Acad. Sci. Paris, 339:5 (2004), 351–354 | DOI | MR | Zbl
[29] P. Djakov, B. Mityagin, “Asymptotics of instability zones of the Hill operator with a two term potential”, J. Funct. Anal., 242:1 (2007), 157–194 ; arXiv: math-ph/0509034 | DOI | MR | Zbl
[30] M. G. Gasymov, “Spektralnyi analiz odnogo klassa nesamosopryazhennykh differentsialnykh operatorov vtorogo poryadka”, Funkts. analiz i ego prilozh., 14:1 (1980), 14–19 | MR | Zbl
[31] V. A. Tkachenko, “Spektralnyi analiz nesamosopryazhennogo operatora Khilla”, Dokl. AN SSSR, 322:2 (1992), 248–252 | MR | Zbl
[32] J.-J. Sansuc, V. Tkachenko, “Spectral parametrization of non-selfadjoint Hill's operators”, J. Differential Equations, 125:2 (1996), 366–384 | DOI | MR | Zbl
[33] V. Tkachenko, “Discriminants and generic spectra of nonselfadjoint Hill's operators”, Spectral operator theory and related topics, Adv. Soviet Math., 19, Amer. Math. Soc., Providence, RI, 1994, 41–71 | MR | Zbl
[34] V. A. Marchenko, Operatory Shturma–Liuvillya i ikh prilozheniya, Naukova dumka, Kiev, 1977 | MR | Zbl
[35] J.-J. Sansuc, V. Tkachenko, “Spectral properties of non-selfadjoint Hill's operators with smooth potentials”, Algebraic and geometric methods in mathematical physics (Kaciveli, 1993), Math. Phys. Stud., 19, Kluwer, Dordrecht, 1996, 371–385 | MR | Zbl
[36] T. Kappeler, B. Mityagin, “Gap estimates of the spectrum of Hill's equation and action variables for KdV”, Trans. Amer. Math. Soc., 351:2 (1999), 619–646 | DOI | MR | Zbl
[37] T. Kappeler, B. Mityagin, “Estimates for periodic and Dirichlet eigenvalues of the Schrödinger operator”, SIAM J. Math. Anal., 33:1 (2001), 113–152 | DOI | MR | Zbl
[38] P. Djakov, B. Mityagin, “Smoothness of Schrödinger operator potential in the case of Gevrey type asymptotics of the gaps”, J. Funct. Anal., 195:1 (2002), 89–128 | DOI | MR | Zbl
[39] P. Djakov, B. Mityagin, “Spectral triangles of Schrödinger operators with complex potentials”, Selecta Math. (N.S.), 9:4 (2003), 495–528 | DOI | MR | Zbl
[40] T. Kato, Teoriya vozmuschenii lineinykh operatorov, Mir, M., 1972 | MR | MR | Zbl
[41] M. Rid, B. Saimon, Metody sovremennoi matematicheskoi fiziki. T. 2: Garmonicheskii analiz. Samosopryazhennost, Mir, M., 1978 | MR | MR | Zbl
[42] B. M. Levitan, I. S. Sargsyan, Vvedenie v spektralnuyu teoriyu: Samosopryazhennye obyknovennye differentsialnye operatory, Nauka, M., 1970 | MR | Zbl
[43] I. M. Gelfand, “Razlozhenie po sobstvennym funktsiyam uravneniya s periodicheskimi koeffitsientami”, Dokl. AN SSSR, 73:6 (1950), 1117–1120 | MR | Zbl
[44] F. S. Rofe-Beketov, “O spektre nesamosopryazhennykh differentsialnykh operatorov s periodicheskimi koeffitsientami”, Dokl. AN SSSR, 152:6 (1963), 1312–1315 | MR | Zbl
[45] F. S. Rofe-Beketov, A. M. Kholkin, Spectral analysis of differential operators. Interplay between spectral and oscillatory properties, World Scientific Monograph Series in Mathematics, 7, World Scientific, Hackensack, NJ, 2005 | MR | Zbl
[46] B. S. Mityagin, “Skhodimost razlozhenii po sobstvennym funktsiyam operatora Diraka”, Dokl. RAN, 393:4 (2003), 456–459 | MR
[47] B. Mityagin, “Spectral expansions of one-dimensional periodic Dirac operators”, Dyn. Partial Differ. Equ., 1:2 (2004), 125–191 | MR | Zbl
[48] M. I. Neiman-zade, A. A. Shkalikov, “Operatory Shrëdingera s singulyarnymi potentsialami iz prostranstv multiplikatorov”, Matem. zametki, 66:5 (1999), 723–733 | MR | Zbl
[49] A. M. Savchuk, A. A. Shkalikov, “Operatory Shturma–Liuvillya s raspredeleniyami-potentsialami”, Tr. MMO, 64, 2003, 159–212 | MR | Zbl
[50] M. A. Krasnoselskii, G. M. Vainikko, P. P. Zabreiko, Ya. B. Rutitskii, V. Ya. Stetsenko, Priblizhennoe reshenie operatornykh uravnenii, Nauka, M., 1969 | MR | Zbl
[51] G. Nenciu, R. Purice, “Onedimensional periodic Dirac Hamiltonians: semiclassical and high-energy asymptotics for gaps”, J. Math. Phys., 37:7 (1996), 3153–3167 | DOI | MR | Zbl
[52] G. Polia, G. Segë, Zadachi i teoremy iz analiza. Chast 1: Ryady. Integralnoe ischislenie. Teoriya funktsii, Nauka, M., 1978 | MR | MR | Zbl
[53] S. Mandelbrojt, Series de Fourier et classes quasi-analytiques de fonctions, Gauthier-Villars, Paris, 1935 | Zbl
[54] I. M. Gelfand, G. E. Shilov, Prostranstva osnovnykh i obobschennykh funktsii, Obobschennye funktsii, 2, Fizmatlit, M., 1958 | MR | Zbl
[55] J. Pöschel, Hill's potentials in weighted Sobolev spaces and their spactral gaps, Preprint, Institut für Analysis, Dynamik und Optimierung, Universität Stuttgart, Stuttgart, 2004; http://www.poschel.de/pbl/w-gaps.pdf
[56] V. Tkachenko, “Characterization of Hill operators with analytic potentials”, Integral Equations Operator Theory, 41:3 (2001), 360–380 | DOI | MR | Zbl
[57] G. M. Keselman, “O bezuslovnoi skhodimosti razlozhenii po sobstvennym funktsiyam nekotorykh differentsialnykh operatorov”, Izv. vuzov. Matem., 1964, no. 2, 82–93 | MR | Zbl
[58] V. P. Mikhailov, “O bazisakh Rissa v $\mathscr L_2(0,1)$”, Dokl. AN SSSR, 144:5 (1962), 981–984 | MR | Zbl
[59] A. S. Makin, “Ob odnoi zadache na sobstvennye znacheniya dlya nelineinogo uravneniya Shturma–Liuvillya s kraevymi usloviyami, zavisyaschimi ot spektralnogo parametra”, Dokl. RAN, 399:2 (2004), 161–164 | MR
[60] M. A. Naimark, Lineinye differentsialnye operatory, Nauka, M., 1969 | MR | Zbl
[61] E. L. Ince, “A proof of the impossibility of the coexistence of two Mathieu functions”, Proc. Cambridge Philos. Soc., 21 (1922), 117–120 | Zbl
[62] E. Hille, “On the zeros of Mathieu functions”, Proc. London Math. Soc. (2), 23 (1924), 185–237 | DOI | Zbl
[63] Z. Markovic, “On the impossibility of simultaneous existence of two Mathieu functions”, Proc. Cambridge Philos. Soc., 23 (1926), 203–205 | DOI | Zbl
[64] N. V. Mak-Lakhlan, Teoriya i prilozheniya funktsii Mate, IL, M., 1953 | MR | Zbl
[65] S. Winkler, W. Magnus, The coexistence problem for Hill's equation, Research Report No. BR-26, New York University, Institute of Mathematical Sciences, Division of Electromagnetic Research, 1958
[66] D. M. Levy, J. B. Keller, “Instability intervals of Hill's equation”, Comm. Pure Appl. Math., 16 (1963), 469–476 | DOI | MR | Zbl
[67] P. Djakov, B. Mityagin, “The asymptotics of spectral gaps of a 1D Dirac operator with cosine potential”, Lett. Math. Phys., 65:2 (2003), 95–108 | DOI | MR | Zbl
[68] P. Djakov, B. Mityagin, “Multiplicities of the eigenvalues of periodic Dirac operators”, J. Differential Equations, 210:1 (2005), 178–216 | DOI | MR | Zbl
[69] A. Grigis, “Estimations asymptotiques des intervalles d'instabilité pour l'équation de Hill”, Ann. Sci. École Norm. Sup. (4), 20:4 (1987), 641–672 | MR | Zbl
[70] E. T. Whittaker, “On a class of differential equations whose solutions satisfy integral equations”, Proc. Edinburgh Math. Soc., 33 (1914–1915), 14–23 | DOI | Zbl
[71] P. Djakov, B. Mityagin, “Simple and double eigenvalues of the Hill operator with a two-term potential”, J. Approx. Theory, 135:1 (2005), 70–104 | DOI | MR | Zbl
[72] A. V. Turbiner, “Kvantovaya mekhanika: zadachi, promezhutochnye po otnosheniyu k tochnoreshaemym i tochnonereshaemym”, ZhETF, 94:2 (1988), 33–44 | MR
[73] A. V. Turbiner, “Quasi-exactly-solvable problems and $\operatorname{sl}(2)$ algebra”, Comm. Math. Phys., 118:3 (1988), 467–474 | DOI | MR | Zbl
[74] H. Volkmer, “Instability intervals of the Ince and Hill equations”, Analysis, 25 (2005), 189–204 | DOI | MR | Zbl
[75] L. A. Pastur, V. A. Tkachenko, “K spektralnoi teorii operatorov Shrëdingera s periodicheskimi kompleksnoznachnymi potentsialami”, Funkts. analiz i ego prilozh., 22:2 (1988), 85–86 | MR | Zbl
[76] M. Simbirskii, “Inverse problem for the Sturm–Liouville operator with almost-periodic potential having only positive Fourier exponents”, Entire and subharmonic functions, Adv. Soviet Math., 11, Amer. Math. Soc., Providence, RI, 1992, 21–38 | MR | Zbl
[77] K. C. Shin, “On half-line spectra for a class of non-self-adjoint Hill operators”, Math. Nachr., 261-262 (2003), 171–175 | DOI | MR | Zbl
[78] P. Djakov, B. Mityagin, “Trace formula and spectral Riemann surfaces for a class of tri-diagonal matrices”, J. Approx. Theory, 139:1–2 (2006), 293–326 | DOI | MR | Zbl
[79] P. Djakov, B. Mityagin, “Spectral gaps of the periodic Schrödinger operator when its potential is an entire function”, Adv. in Appl. Math., 31:3 (2003), 562–596 | DOI | MR | Zbl
[80] V. A. Marchenko, I. V. Ostrovskii, “Approksimatsiya periodicheskikh potentsialov konechnozonnymi potentsialami”, Vestn. Khark. gos. un-ta, 1980, no. 205, 4–40 | MR | Zbl
[81] T. V. Misyura, “Kharakteristika spektrov periodicheskikh i antiperiodicheskikh kraevykh zadach, porozhdaemykh operatorami Diraka. I, II”, Teoriya funktsii, funktsionalnyi analiz i ikh prilozheniya, 30, Khark. un-t, Kharkov, 1978, 90–101 ; 31, 1979, 102–109 | MR | Zbl | MR | Zbl
[82] V. Tkachenko, “Non-selfadjoint periodic Dirac operators with finite-band spectra”, Integral Equations Operator Theory, 36:3 (2000), 325–348 | DOI | MR | Zbl
[83] V. Tkachenko, “Non-selfadjoint periodic Dirac operators”, Operator theory, system theory and related topics (Beer-Sheva/Rehovot, 1997), Oper. Theory Adv. Appl., 123, Birkhäuser, Basel, 2001, 485–512 | MR | Zbl
[84] B. Grébert, T. Kappeler, “Density of finite gap potentials for the Zakharov–Shabat system”, Asymptotic Anal., 33:1 (2003), 1–8 | MR | Zbl