The law of the iterated logarithm for an associated random field
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 61 (2006) no. 2, pp. 359-361
Cet article a éte moissonné depuis la source Math-Net.Ru
@article{RM_2006_61_2_a9,
author = {A. P. Shashkin},
title = {The law of the iterated logarithm for an associated random field},
journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
pages = {359--361},
year = {2006},
volume = {61},
number = {2},
language = {en},
url = {http://geodesic.mathdoc.fr/item/RM_2006_61_2_a9/}
}
A. P. Shashkin. The law of the iterated logarithm for an associated random field. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 61 (2006) no. 2, pp. 359-361. http://geodesic.mathdoc.fr/item/RM_2006_61_2_a9/
[1] J. D. Esary, F. Proschan, D. W. Walkup, Ann. Math. Statist., 38 (1967), 1466–1474 | DOI | MR | Zbl
[2] A. V. Bulinskii, Fundam. i prikl. matem., 1:3 (1995), 623–639 | MR | Zbl
[3] A. V. Bulinski, C. Suquet, Statist. Probab. Lett., 54:2 (2001), 215–226 | DOI | MR | Zbl
[4] H. Yu, Acta Math. Sinica, 29:4 (1986), 507–511 | MR | Zbl
[5] A. R. Dabrowski, H. Dehling, Stochastic Process. Appl., 30:2 (1988), 277–289 | DOI | MR | Zbl
[6] M. J. Wichura, Ann. Probab., 2 (1974), 202–230 | DOI | MR | Zbl
[7] A. V. Bulinski, M. S. Keane, J. Math. Sci., 81:5 (1996), 2905–2911 | DOI | MR | Zbl
[8] A. V. Bulinskii, E. Shabanovich, Fundam. i prikl. matem., 4:2 (1998), 479–492 | MR | Zbl