@article{RM_2006_61_2_a2,
author = {A. S. Holevo},
title = {Multiplicativity of $p$-norms of completely positive maps and the additivity problem in quantum information theory},
journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
pages = {301--339},
year = {2006},
volume = {61},
number = {2},
language = {en},
url = {http://geodesic.mathdoc.fr/item/RM_2006_61_2_a2/}
}
TY - JOUR AU - A. S. Holevo TI - Multiplicativity of $p$-norms of completely positive maps and the additivity problem in quantum information theory JO - Trudy Matematicheskogo Instituta imeni V.A. Steklova PY - 2006 SP - 301 EP - 339 VL - 61 IS - 2 UR - http://geodesic.mathdoc.fr/item/RM_2006_61_2_a2/ LA - en ID - RM_2006_61_2_a2 ER -
%0 Journal Article %A A. S. Holevo %T Multiplicativity of $p$-norms of completely positive maps and the additivity problem in quantum information theory %J Trudy Matematicheskogo Instituta imeni V.A. Steklova %D 2006 %P 301-339 %V 61 %N 2 %U http://geodesic.mathdoc.fr/item/RM_2006_61_2_a2/ %G en %F RM_2006_61_2_a2
A. S. Holevo. Multiplicativity of $p$-norms of completely positive maps and the additivity problem in quantum information theory. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 61 (2006) no. 2, pp. 301-339. http://geodesic.mathdoc.fr/item/RM_2006_61_2_a2/
[1] A. S. Kholevo, Vvedenie v kvantovuyu teoriyu informatsii, MTsNMO, M., 2002
[2] C. H. Bennett, P. W. Shor, “Quantum information theory”, IEEE Trans. Inform. Theory, 44:6 (1998), 2724–2742 | DOI | MR | Zbl
[3] M. A. Nielsen, I. L. Chuang, Quantum computation and quantum information, Cambridge Univ. Press, Cambridge, 2000 | MR | Zbl
[4] W. Beckner, “Inequalities in Fourier analysis”, Ann. of Math. (2), 102:1 (1975), 159–182 | DOI | MR | Zbl
[5] G. Bennett, “Schur multipliers”, Duke Math. J., 44:3 (1977), 603–639 | DOI | MR | Zbl
[6] E. H. Lieb, “Gaussian kernels have only Gaussian maximizers”, Invent. Math., 102:1 (1990), 179–208 | DOI | MR | Zbl
[7] M. Lifshits, A. Nazarov, Ya. Nikitin, “Tail behavior of anisotropic norms for Gaussian random fields”, C. R. Math. Acad. Sci. Paris, 336:1 (2003), 85–88 | MR | Zbl
[8] R. Schatten, Norm ideals of completely continuous operators, Springer-Verlag, Berlin, 1960 | MR | Zbl
[9] M.-D. Choi, “Completely positive maps on complex matrices”, Linear Algebra Appl., 10 (1975), 285–290 | DOI | MR | Zbl
[10] A. I. Kostrikin, Yu. I. Manin, Lineinaya algebra i geometriya, Nauka, M., 1986 | MR | Zbl
[11] G. G. Amosov, A. S. Kholevo, R. F. Verner, “O nekotorykh problemakh additivnosti v kvantovoi teorii informatsii”, Problemy peredachi informatsii, 36:4 (2000), 25–34 ; arXiv: math-ph/0003002 | MR | Zbl
[12] G. G. Amosov, A. S. Kholevo, “O gipoteze multiplikativnosti dlya kvantovykh kanalov”, Teoriya veroyan. i ee primen., 47:1 (2002), 143–146 ; arXiv: math-ph/0103015 | MR | Zbl
[13] E. A. Carlen, E. H. Lieb, “A Minkowsky type trace inequality and strong subadditivity of quantum entropy”, Differential operators and spectral theory, Amer. Math. Soc. Transl. (2), 189, Amer. Math. Soc., Providence, RI, 1999, 59–68 | MR | Zbl
[14] G. Pisier, Non-commutative vector valued $L_p$-spaces and completely $p$-summing maps, Astérisque, 247, Société Mathématique de France, Paris, 1998 | MR | Zbl
[15] I. Devetak, M. Junge, C. King, M. B. Ruskai, Multiplicativity of completely bounded $p$-norms implies a new additivity result, arXiv: quant-ph/0506196 | MR
[16] W. F. Stinespring, “Positive functions on $C^*$-algebras”, Proc. Amer. Math. Soc., 6 (1955), 211–216 | DOI | MR | Zbl
[17] C. King, M. B. Ruskai, “Comments on multiplicativity of maximal $p$-norms when $p=2$”, Quantum information, statistics, probability, ed. O. Hirota, Rinton Press, Princeton, NJ, 2004, 102–114 ; arXiv: quant-ph/0401026 | MR
[18] C. King, M. Nathanson, M. B. Ruskai, “Multiplicativity properties of entrywise positive maps on matrix algebras”, Linear Algebra Appl., 404 (2005), 367–379 ; arXiv: quant-ph/0409181 | DOI | MR | Zbl
[19] E. A. Morozova, N. N. Chentsov, “Markovskaya invariantnaya geometriya na mnogoobraziyakh sostoyanii”, N. N. Chentsov. Izbrannye trudy. Matematika, Fizmatlit, M., 2001, 234–265
[20] M. B. Ruskai, S. Szarek, E. Werner, “An analysis of completely positive trace-preserving maps on $\mathscr M_2$ matrices”, Linear Algebra Appl., 347 (2002), 159–187 ; arXiv: quant-ph/0101003 | DOI | MR | Zbl
[21] M. Fukuda, A. S. Holevo, On Weyl-covariant channels, arXiv: quant-ph/0510148
[22] J. Watrous, “Notes on super-operator norms induced by Schatten norms”, Quantum Inf. Comput., 5:1 (2005), 58–68 ; arXiv: quant-ph/0411077 | MR
[23] K. M. R. Audenaert, A note on the $p\to q$ norms of completely positive maps, arXiv: math-ph/0505085
[24] B. Schumacher, M. D. Westmoreland, “Optimal signal ensembles”, Phys. Rev. A, 63 (2001), 022308 ; arXiv: quant-ph/9912122 | DOI
[25] C. H. Bennett, C. A. Fuchs, J. A. Smolin, “Entanglement-enhanced classical communication on a noisy quantum channel”, Quantum communication, computing and measurement, Proc. QCM96, ed. O. Hirota, A. S. Holevo, and C. M. Caves, Plenum, New York, 1997, 79–88 ; arXiv: quant-ph/9611006 | Zbl
[26] A. S. Kholevo, “Kvantovye teoremy kodirovaniya”, UMN, 53:6 (1998), 193–230 | MR | Zbl
[27] G. G. Magaril-Ilyaev, V. M. Tikhomirov, Vypuklyi analiz i ego prilozheniya, Editorial URSS, M., 2000
[28] P. W. Shor, “Equivalence of additivity questions in quantum information theory”, Comm. Math. Phys., 246:3 (2004), 453–472 ; arXiv: quant-ph/0305035 | DOI | MR | Zbl
[29] K. M. R. Audenaert, S. L. Braunstein, “On strong superadditivity of the entanglement of formation”, Comm. Math. Phys., 246:3 (2004), 443–452 ; arXiv: quant-ph/0303045 | DOI | MR | Zbl
[30] A. S. Holevo, On complementary channels and the additivity problem, arXiv: quant-ph/0509101
[31] C. King, K. Matsumoto, M. Natanson, M. B. Ruskai, Properties of conjugate channels with applications to additivity and multiplicativity, arXiv: quant-ph/0509126
[32] M. Fukuda, Extending additivity from symmetric to asymmetric channels, arXiv: quant-ph/0505022 | MR
[33] M. Horodecki, P. W. Shor, M. B. Ruskai, “Entanglement breaking channels”, Rev. Math. Phys., 15:6 (2003), 629–641 ; arXiv: quant-ph/0302031 | DOI | MR | Zbl
[34] C. King, An application of a matrix inequality in quantum information theory, arXiv: quant-ph/0412046
[35] P. W. Shor, “Additivity of the classical capacity of entanglement-breaking quantum channels”, J. Math. Phys., 43:9 (2002), 4334–4340 ; arXiv: quant-ph/0201149 | DOI | MR | Zbl
[36] C. King, “Maximal $p$-norms of entanglement breaking channels”, Quantum Inf. Comput., 3:2 (2003), 186–190 ; arXiv: quant-ph/0212057 | MR
[37] E. H. Lieb, W. E. Thirring, “Inequalities for the moments of the eigenvalues of the Schrödinger Hamiltonian and their relation to Sobolev inequalities”, Studies in mathematical physics, ed. E. H. Lieb, B. Simon, and A. Wightman, Princeton Univ. Press, Princeton, 1976, 269–297 | Zbl
[38] R. Bhatia, Matrix analysis, Graduate Texts Math., 169, Springer-Verlag, New York, 1997 | MR
[39] H. Araki, “On an inequality of Lieb and Thirring”, Lett. Math. Phys., 19:2 (1990), 167–170 | DOI | MR | Zbl
[40] A. S. Holevo, M. E. Shirokov, “On Shor's channel extension and constrained channels”, Comm. Math. Phys., 249:2 (2004), 417–430 ; arXiv: quant-ph/0306196 | DOI | MR | Zbl
[41] G. W. Mackey, Unitary group representations in physics, probability and number theory, Benjamin / Cummings, Reading, MA, 1978 | MR | Zbl
[42] A. S. Holevo, “A note on covariant dynamical semigroups”, Rep. Math. Phys., 32:2 (1993), 211–216 | DOI | MR | Zbl
[43] C. King, “Additivity for unital qubit channels”, J. Math. Phys., 43:10 (2002), 4641–4653 ; arXiv: quant-ph/0103156 | DOI | MR | Zbl
[44] C. King, N. Koldan, New multiplicativity results for qubit maps, arXiv: quant-ph/0512185 | MR
[45] C. King, “The capacity of the quantum depolarizing channel”, IEEE Trans. Inform. Theory, 49:1 (2003), 221–229 ; arXiv: quant-ph/0204172 | DOI | MR | Zbl
[46] N. Datta, A. S. Holevo, Complementarity and additivity for depolarizing channels, arXiv: quant-ph/0510145
[47] R. F. Werner, A. S. Holevo, “Counterexample to an additivity conjecture for output purity of quantum channels”, J. Math. Phys., 43:9 (2002), 4353–4357 | DOI | MR | Zbl
[48] N. Datta, Multiplicativity of maximal $p$-norms in Werner–Holevo channels for $1\le p\le2$, arXiv: quant-ph/0410063
[49] K. Matsumoto, F. Yura, “Entanglement cost of antisymmetric states and additivity of capacity of some quantum channel”, J. Phys. A, 37:15 (2004), L167–L171 ; arXiv: quant-ph/0306009 | DOI | MR | Zbl
[50] N. Datta, A. S. Holevo, Y. M. Suhov, A quantum channel with additive minimum output entropy, arXiv: quant-ph/0408176
[51] R. Alicki, M. Fannes, “Note on multiple additivity of minimal Renyi entropy output of the Werner–Holevo channels”, Open Syst. Inf. Dyn., 11:4 (2004), 339–342 ; arXiv: quant-ph/0407033 | DOI | MR | Zbl
[52] M. M. Wolf, J. Eisert, Classical information capacity of a class of quantum channels, arXiv: quant-ph/0412133
[53] S. Osawa, H. Nagaoka, Numerical experiments on the capacity of quantum channel with entangled input states, arXiv: quant-ph/0007115
[54] M. Hayashi, H. Imai, K. Matsumoto, M. B. Ruskai, T. Shimono, “Qubit channels which require four inputs to achieve capacity: implications for additivity conjectures”, Quantum Inf. Comput., 5:1 (2005), 13–31 ; arXiv: quant-ph/0403176 | MR
[55] A. S. Holevo, R. F. Werner, “Evaluating capacities of Bosonic Gaussian channels”, Phys. Rev. A, 63 (2001), 032312 ; arXiv: quant-ph/9912067 | DOI
[56] A. Wehrl, “General properties of entropy”, Rev. Modern Phys., 50:2 (1978), 221–260 | DOI | MR
[57] A. S. Kholevo, “Klassicheskie propusknye sposobnosti kvantovogo kanala s ogranicheniem na vkhode”, Teoriya veroyatn. i ee primen., 48:2 (2003), 359–374 | MR | Zbl
[58] A. S. Kholevo, M. E. Shirokov, “Nepreryvnye ansambli i propusknaya sposobnost kvantovykh kanalov beskonechnoi razmernosti”, Teoriya veroyatn. i ee primen., 50:1 (2005), 98–114 ; arXiv: quant-ph/0408176 | MR
[59] M. E. Shirokov, The Holevo capacity of infinite dimensional channels and the additivity problem, arXiv: quant-ph/0408009 | MR
[60] V. Giovannetti, S. Lloyd, L. Maccone, J. H. Shapiro, B. J. Yen, “Minimum Rényi and Wehrl entropies at the output of bosonic channels”, Phys. Rev. A (3), 70:2 (2004), 022328 ; arXiv: quant-ph/0404037 | DOI | MR
[61] V. Giovannetti, S. Lloyd, “Additivity properties of a Gaussian channel”, Phys. Rev. A (3), 69:6 (2004), 062307 ; arXiv: quant-ph/0403075 | DOI | MR
[62] M. M. Wolf, G. Giedke, J. I. Cirac, Extremality of Gaussian quantum states, arXiv: quant-ph/0509154 | MR