@article{RM_2006_61_1_a1,
author = {V. M. Buchstaber and I. M. Krichever},
title = {Integrable equations, addition theorems, and the {Riemann{\textendash}Schottky} problem},
journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
pages = {19--78},
year = {2006},
volume = {61},
number = {1},
language = {en},
url = {http://geodesic.mathdoc.fr/item/RM_2006_61_1_a1/}
}
TY - JOUR AU - V. M. Buchstaber AU - I. M. Krichever TI - Integrable equations, addition theorems, and the Riemann–Schottky problem JO - Trudy Matematicheskogo Instituta imeni V.A. Steklova PY - 2006 SP - 19 EP - 78 VL - 61 IS - 1 UR - http://geodesic.mathdoc.fr/item/RM_2006_61_1_a1/ LA - en ID - RM_2006_61_1_a1 ER -
V. M. Buchstaber; I. M. Krichever. Integrable equations, addition theorems, and the Riemann–Schottky problem. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 61 (2006) no. 1, pp. 19-78. http://geodesic.mathdoc.fr/item/RM_2006_61_1_a1/
[1] I. M. Krichever, “Integrirovanie nelineinykh uravnenii metodami algebraicheskoi geometrii”, Funkts. analiz i ego pril., 11:1 (1977), 15–31 | MR | Zbl
[2] I. M. Krichever, “Metody algebraicheskoi geometrii v teorii nelineinykh uravnenii”, UMN, 32:6 (1977), 183–208 | MR | Zbl
[3] B. A. Dubrovin, V. B. Matveev, S. P. Novikov, “Nelineinye uravneniya tipa Kortevega–de Friza, konechnozonnye lineinye operatory i abelevy mnogoobraziya”, UMN, 31:1 (1976), 55–136 | MR | Zbl
[4] A. R. Its, V. B. Matveev, “Ob operatorakh Khilla s konechnym chislom lakun”, Funkts. analiz i ego pril., 9:1 (1975), 69–70 | MR | Zbl
[5] H. P. McKean, P. van Moerbeke, “The spectrum of Hill's equation”, Invent. Math., 30:3 (1975), 217–274 | DOI | MR | Zbl
[6] P. D. Lax, “Periodic solutions of the KDV equation”, Comm. Pure Appl. Math., 28 (1975), 141–188 | MR | Zbl
[7] B. A. Dubrovin, “Teta-funktsii i nelineinye uravneniya”, UMN, 36:2 (1981), 11–80 | MR | Zbl
[8] T. Shiota, “Characterization of Jacobian varieties in terms of soliton equations”, Invent. Math., 83:2 (1986), 333–382 | DOI | MR | Zbl
[9] I. A. Taimanov, “Sekuschie abelevykh mnogoobrazii, teta-funktsii i solitonnye uravneniya”, UMN, 52:1 (1997), 149–224 | MR | Zbl
[10] J. Igusa, “On the irreducibility of Schottky's divisor”, J. Fac. Sci. Univ. Tokyo Sect. IA Math., 28:3 (1981, 1982), 531–545 | MR | Zbl
[11] F. Schottky, H. Jung, “Neue Sätze über Symmetralfunktionen und die Abel'schen Funktionen der Riemann'schen Theorie”, Akad. Wiss. Berlin Phys. Math. Kl., 1909, 282–297 | Zbl
[12] H. M. Farkas, H. E. Rauch, “Period relations of Schottky type on Riemann surfaces”, Ann. of Math. (2), 92 (1970), 434–461 | DOI | MR | Zbl
[13] B. van Geemen, “Siegel modular forms vanishing on the moduli space of curves”, Invent. Math., 78:2 (1984), 329–349 | DOI | MR | Zbl
[14] R. Donagi, “Big Schottky”, Invent. Math., 89:3 (1987), 569–599 | DOI | MR | Zbl
[15] A. Andreotti, A. L. Mayer, “On period relations for abelian integrals on algebraic curves”, Ann. Scuola Norm. Sup. Pisa (3), 21 (1967), 189–238 | MR | Zbl
[16] A. Beauville, “Prym varieties and the Schottky problem”, Invent. Math., 41:2 (1977), 149–196 | DOI | MR | Zbl
[17] J. Little, “Translation manifolds and the Schottky problem”, Theta functions–Bowdoin 1987, Part 1 (Brunswick, ME, 1987), Proc. Sympos. Pure Math., 49, Amer. Math. Soc., Providence, RI, 1989, 517–529 | MR | Zbl
[18] R. C. Gunning, “Some curves in abelian varieties”, Invent. Math., 66:3 (1982), 377–389 | DOI | MR | Zbl
[19] R. C. Gunning, “Some identities for abelian integrals”, Amer. J. Math., 108:1 (1986), 39–74 | DOI | MR | Zbl
[20] J. D. Fay, Theta functions on Riemann surfaces, Lecture Notes in Math., 352, Springer-Verlag, Berlin, 1973 | MR | Zbl
[21] G. E. Welters, “On flexes of the Kummer variety (note on a theorem of R. C. Gunning)”, Nederl. Akad. Wetensch. Indag. Math., 45:4 (1983), 501–520 | MR | Zbl
[22] G. E. Welters, “A criterion for Jacobi varieties”, Ann. of Math. (2), 120:3 (1984), 497–504 | DOI | MR | Zbl
[23] D. Mumford, “An algebro-geometric construction of commuting operators and of solutions to the Toda lattice equation Korteweg–de Vries equation and related nonlinear equations”, Proceedings of the International Symposium on Algebraic Geometry (Kyoto, 1977), Kinokuniya Book Store, Kyoto, 1978, 115–153 | MR
[24] E. Arbarello, C. De Concini, “On a set of equations characterizing Riemann matrices”, Ann. of Math. (2), 120:1 (1984), 119–140 | DOI | MR | Zbl
[25] E. Arbarello, C. De Concini, “Another proof of a conjecture of S. P. Novikov on periods of abelian integrals on Riemann surfaces”, Duke Math. J., 54:1 (1987), 163–178 | DOI | MR | Zbl
[26] A. Beauville, O. Debarre, “Une relation entre deux approches du problème de Schottky”, Invent. Math., 86:1 (1986), 195–207 | DOI | MR | Zbl
[27] O. Debarre, “The trisecant conjecture for Pryms”, Theta functions–Bowdoin 1987, Part 1 (Brunswick, ME, 1987), Proc. Sympos. Pure Math., 49, Amer. Math. Soc., Providence, RI, 1989, 621–626 | MR | Zbl
[28] V. M. Bukhshtaber, I. M. Krichever, “Vektornye teoremy slozheniya i funktsii Beikera–Akhiezera”, TMF, 94:2 (1993), 200–212 | MR | Zbl
[29] V. Buchstaber, I. Krichever, “Multidimensional vector addition theorems and the Riemann theta functions”, Internat. Math. Res. Notices, 1996, no. 10, 505–513 | DOI | MR | Zbl
[30] A.-L. Cauchy, “Cours d'analyse de l'École royale polytechnique. Première partie: Analyse algébrique”, Gallica-Math, ØE uvres complètes sér. 2, 3 | Zbl
[31] Ya. Atsel, Zh. Dombr, Funktsionalnye uravneniya s neskolkimi peremennymi i ikh primenenie v matematike, teorii informatsii, a takzhe v naukakh o prirode i obschestve, Fizmatlit, M., 2003 | Zbl
[32] N. H. Abel, “Méthode générale pour trouver des fonctions d'une seule quantité variable, lorsqu'une propriété de ces fonctions est exprimée par une équation entre deux variables”, Magazin for Naturvidenskaberne, Cristiania, 1:1 (1823); ØE uvres complètes, 1, 1881, 1–10 ; http://math-doc.ujf-grenoble.fr/GALLICA | MR | Zbl
[33] G. Frobenius, L. Stickelberger, “Über die Additon und Multiplication der elliptischen Funtionen”, J. Reine Angew. Math., 88 (1880), 146–184
[34] S. Grushevsky, “Cubic equations for the hyperelliptic locus”, Asian J. Math., 8:1 (2004), 161–172 | MR | Zbl
[35] S. Grushevsky, “Erratum to: ‘Cubic equations for the hyperelliptic locus’”, Asian J. Math., 9:2 (2005), 273 | MR
[36] G. Pareschi, M. Popa, Castelnuovo theory and the geometric Schottky problem, http://arXiv.org/math.AG/0407370
[37] E. Arbarello, M. Cornalba, P. Griffiths, J. Harris, Geometry of algebraic curves, Grundlehren Math. Wiss., 267, Springer-Verlag, 1985 | MR | Zbl
[38] I. M. Krichever, S. P. Novikov, “Algebry tipa Virasoro, rimanovy poverkhnosti i struktury teorii solitonov”, Funkts. analiz i ego pril., 21:2 (1987), 46–63 | MR | Zbl
[39] P. G. Grinevich, S. P. Novikov, “Topological charge of the real periodic finite-gap sine-Gordon solutions”, Comm. Pure Appl. Math., 56:7 (2003), 956–978 ; http://arXiv.org/math-ph/0111039 | DOI | MR | Zbl
[40] V. M. Bukhshtaber, D. V. Leikin, “Trilineinye funktsionalnye uravneniya”, UMN, 60:2 (2005), 151–152 | MR | Zbl
[41] V. M. Bukhshtaber, D. V. Leikin, “Zakony slozheniya na yakobianakh ploskikh algebraicheskikh krivykh”, Trudy MIAN, 251, 2005, 54–126 | MR
[42] R. Hirota, The direct method in soliton theory, Cambridge Tracts in Math., 155, Cambridge Univ. Press, Cambridge, 2004 | MR | Zbl
[43] H. W. Braden, V. M. Buchstaber, “The general analytic solution of a functional equation of addition type”, SIAM J. Math. Anal., 28:4 (1997), 903–923 | DOI | MR | Zbl
[44] I. M. Krichever, “Ellipticheskie resheniya uravneniya Kadomtseva–Petviashvili i integriruemye sistemy chastits”, Funkts. analiz i ego pril., 14:4 (1980), 45–54 | MR | Zbl
[45] I. Krichever, O. Babelon, E. Billey, M. Talon, “Spin generalization of the Calogero–Moser system and the matrix KP equation”, Amer. Math. Transl. Ser. 2, 170 (1995), 83–119 | MR | Zbl
[46] I. Krichever, “Elliptic solutions to difference nonlinear equations and nested Bethe ansatz equations”, Calogero–Moser–Sutherland models (Montréal, QC, 1997), CRM Ser. Math. Phys., Springer, New York, 2000, 249–271 | MR | Zbl
[47] I. M. Krichever, A. V. Zabrodin, “Spinovoe obobschenie modeli Reisenarsa–Shnaidera, neabaleva dvumerizovannaya tsepochka Toda i predstavleniya algebry Sklyanina”, UMN, 50:6 (1995), 3–56 | MR | Zbl
[48] I. Krichever, Integrable linear equations and the Riemann–Schottky problem, http://arXiv.org/math.AG/0504192
[49] I. Krichever, A characterization of Prym varieties, http://arXiv.org/math.AG/0506238 | MR
[50] H. F. Baker, Abel's theorem and the allied theory including the theory of the theta functions, Cambridge Univ. Press, Cambridge, 1897 | MR | Zbl
[51] P. J. Olver, Classical invariant theory, London Math. Soc. Stud. Texts, 44, Cambridge Univ. Press, Cambridge, 1999 | MR | Zbl
[52] B. Grammaticos, A. Ramani, J. Hietarinta, “Multilinear operators: the natural extension of Hirota's bilinear formalism”, Phys. Lett. A, 190:1 (1994), 65–70 | DOI | MR | Zbl
[53] F. Calogero, “Exactly solvable one-dimensional many-body problems”, Lett. Nuovo Cimento (2), 13:11 (1975), 411–416 | DOI | MR
[54] F. Calogero, “On a functional equation connected with integrable many-body problems”, Lett. Nuovo Cimento (2), 16:3 (1976), 77–80 | DOI | MR
[55] V. M. Buchstaber, A. M. Perelomov, “On the functional equation related to the quantum three-body problem”, Contemporary mathematical physics, Amer. Math. Soc. Transl. Ser. 2, 175, Amer. Math. Soc., Providence, RI, 1996, 15–34 | MR | Zbl
[56] V. M. Buchstaber, D. V. Leykin, “Hyperelliptic addition law”, J. Nonlinear Math. Phys., 12, Suppl. 1 (2005), 106–123 | DOI | MR
[57] V. M. Buchstaber, V. Z. Enolskii, D. V. Leikin, “Hyperelliptic Kleinian functions and applications”, Solitons, geometry, and topology: on the crossroad, Amer. Math. Soc. Transl. Ser. 2, 179, eds. V. M. Buchstaber and S. P. Novikov, Amer. Math. Soc., Providence, RI, 1997, 1–33 | MR | Zbl
[58] V. M. Buchstaber, V. Z. Enolskii, D. V. Leykin, “Kleinian functions, hyperelliptic Jacobians and applications”, Rev. Math. Math. Phys., 10:2 (1997), 3–120 | MR | Zbl
[59] V. M. Bukhshtaber, D. V. Leikin, “Funktsionalnye uravneniya, opredelyayuschie umnozhenie v nepreryvnom bazise Krichevera–Novikova”, UMN, 61:1 (2006), 171–172 | MR
[60] E. Arbarello, G. Marini, I. Krichever, Characterizing Jacobians via flexes of the Kummer variety, http://arXiv.org/math.AG/0502138 | MR
[61] J. L. Burchnall, T. W. Chaundy, “Commutative ordinary differential operators. I”, Proc. London Math. Soc. (2), 21 (1923), 420–440 | DOI | Zbl
[62] J. L. Burchnall, T. W. Chaundy, “Commutative ordinary differential operators. II”, Proc. R. Soc. London Ser. A, 118 (1928), 557–583 | DOI | Zbl
[63] G. Segal, G. Wilson, “Loop groups and equations of KdV type”, Inst. Hautes Études Sci. Publ. Math., 61 (1985), 5–65 | DOI | MR | Zbl
[64] P. Deligne, D. Mumford, “The irreducibility of the space of curves of given genus”, Inst. Hautes Études Sci. Publ. Math., 36 (1969), 75–109 | DOI | MR | Zbl