Inequalities of Gagliardo–Nirenberg type and estimates for the moduli of continuity
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 60 (2005) no. 6, pp. 1147-1164 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In this paper a study is made of multiplicative inequalities of Gagliardo–Nirenberg type that connect partial moduli of continuity and partial derivatives of functions with respect to a fixed variable in different Lorentz norms. The main results are expressed by estimates of the form $$ \biggl(\int_\delta^\infty[h^{-\theta r}\omega_j^r(f;h)_{p,s}]^s\,\frac{dh}h\biggr)^{1/s}\le c\|f\|_{p_0,s_0}^{1-\theta}[\delta^{-r}\omega_j^r(f;\delta)_{p_1,s_1}]^\theta, $$ where $0\theta1$, $$ \frac1p=\frac{1-\theta}{p_0}+\frac{\theta}{p_1}\,, \qquad \frac1s=\frac{1-\theta}{s_0}+\frac{\theta}{s_1}\,, $$ and the exponents $p_i$ and $s_i$ satisfy certain conditions. In particular, these estimates imply optimal inequalities involving Besov norms and Lorentz norms. The limit case $p_1=s_1=1$ and estimates in terms of total variation are also studied.
@article{RM_2005_60_6_a8,
     author = {V. I. Kolyada},
     title = {Inequalities of {Gagliardo{\textendash}Nirenberg} type and estimates for the moduli of continuity},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {1147--1164},
     year = {2005},
     volume = {60},
     number = {6},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/RM_2005_60_6_a8/}
}
TY  - JOUR
AU  - V. I. Kolyada
TI  - Inequalities of Gagliardo–Nirenberg type and estimates for the moduli of continuity
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2005
SP  - 1147
EP  - 1164
VL  - 60
IS  - 6
UR  - http://geodesic.mathdoc.fr/item/RM_2005_60_6_a8/
LA  - en
ID  - RM_2005_60_6_a8
ER  - 
%0 Journal Article
%A V. I. Kolyada
%T Inequalities of Gagliardo–Nirenberg type and estimates for the moduli of continuity
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2005
%P 1147-1164
%V 60
%N 6
%U http://geodesic.mathdoc.fr/item/RM_2005_60_6_a8/
%G en
%F RM_2005_60_6_a8
V. I. Kolyada. Inequalities of Gagliardo–Nirenberg type and estimates for the moduli of continuity. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 60 (2005) no. 6, pp. 1147-1164. http://geodesic.mathdoc.fr/item/RM_2005_60_6_a8/

[1] O. V. Besov, V. P. Ilin, S. M. Nikolskii, Integralnye predstavleniya funktsii i teoremy vlozheniya, Nauka, M., 1975 | MR | Zbl

[2] P. L. Ulyanov, “Teoremy vlozheniya i sootnosheniya mezhdu nailuchshimi priblizheniyami (modulyami nepreryvnosti) v raznykh metrikakh”, Matem. sb., 81:1 (1970), 104–131 | MR | Zbl

[3] V. I. Kolyada, “O sootnosheniyakh mezhdu modulyami nepreryvnosti v raznykh metrikakh”, Tr. MIAN, 181, 1988, 117–136 | MR

[4] V. I. Kolyada, “O vlozhenii prostranstv Soboleva”, Matem. zametki, 54:3 (1993), 48–71 | MR | Zbl

[5] A. Pełczyński, M. Wojciechowski, “Molecular decompositions and embedding theorems for vector-valued Sobolev spaces with gradient norm”, Studia Math., 107:1 (1993), 61–100 | MR

[6] J. Bourgain, H. Brezis, P. Mironescu, “Another look at Sobolev spaces”, Optimal Control and Partial Differential Equations, In honour of Professor Alain Bensoussan's 60th Birthday, eds. J. L. Menaldi, E. Rofman, and A. Sulem, IOS Press / Ohmsha, Amsterdam / Tokyo, 2001, 439–455 | Zbl

[7] J. Bourgain, H. Brezis, P. Mironescu, “Limiting embedding theorems for $W^{s,p}$ when $s\uparrow1$ and applications”, J. Anal. Math., 87 (2002), 77–101 | DOI | MR | Zbl

[8] V. Maz'ya, T. Shaposhnikova, “On the Bourgain, Brezis, and Mironescu theorem concerning limiting embeddings of fractional Sobolev spaces”, J. Funct. Anal., 195:2 (2002), 230–238 | DOI | MR | Zbl

[9] V. Maz'ya, T. Shaposhnikova, “On the Brezis and Mironescu conjecture concerning a Gagliardo–Nirenberg inequality for fractional Sobolev norms”, J. Math. Pures Appl. (9), 81:9 (2002), 877–884 | MR | Zbl

[10] V. I. Kolyada, A. K. Lerner, “On limiting embeddings of Besov spaces”, Studia Math., 171:1 (2005), 1–13 | MR | Zbl

[11] T. Runst, “Mapping properties of nonlinear operators in spaces of Triebel–Lizorkin and Besov type”, Anal. Math., 12:4 (1986), 313–346 | DOI | MR | Zbl

[12] H. Brezis, P. Mironescu, “Gagliardo–Nirenberg, composition and products in fractional Sobolev spaces”, J. Evol. Equ., 1:4 (2001), 387–404 | DOI | MR | Zbl

[13] S. Poornima, “An embedding theorem for the Sobolev space $W^{1,1}$”, Bull. Sci. Math. (2), 107:3 (1983), 253–259 | MR | Zbl

[14] J. J. F. Fournier, “Mixed norms and rearrangements: Sobolev's inequality and Littlewood's inequality”, Ann. Mat. Pura Appl. (4), 148 (1987), 51–76 | DOI | MR

[15] I. Stein, G. Veis, Vvedenie v garmonicheskii analiz na evklidovykh prostranstvakh, Mir, M., 1974 | Zbl

[16] C. Bennett, R. Sharpley, Interpolation of Operators, Pure Appl. Math., 129, Academic Press, Boston, 1988 | MR

[17] P. P. Petrushev, V. A. Popov, Rational Approximation of Real Functions, Encyclopedia Math. Appl., 28, Cambridge Univ. Press, Cambridge, 1987 | MR | Zbl

[18] B. S. Kashin, “Zamechaniya ob otsenke funktsii Lebega ortonormirovannykh sistem”, Matem. sb., 106:3 (1978), 380–385 | MR | Zbl

[19] S. V. Bochkarev, “Raskhodyaschiisya na mnozhestve polozhitelnoi mery ryad Fure dlya proizvolnoi ogranichennoi ortonormirovannoi sistemy”, Matem. sb., 98:3 (1975), 436–449 | MR | Zbl

[20] W. P. Ziemer, Weakly Differentiable Functions, Grad. Texts in Math., 120, Springer-Verlag, New York, 1989 | MR | Zbl

[21] A. Cohen, W. Dahmen, I. Daubechies, R. DeVore, “Harmonic analysis of the space BV”, Rev. Mat. Iberoamericana, 19:1 (2003), 235–263 | MR | Zbl