Simultaneous Lipschitz extensions
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 60 (2005) no. 6, pp. 1057-1076 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

This paper is devoted to a study of a new bi-Lipschitz invariant $\lambda(M)$ of metric spaces $M$. Finiteness of this quantity means that the Lipschitz functions on any subset of $M$ can be linearly extended to functions on $M$ with Lipschitz constants increased by the factor $\lambda(M)$. It is shown that $\lambda(M)$ is finite for some important classes of metric spaces, including metric trees of any cardinality, groups of polynomial growth, hyperbolic groups in the Gromov sense, certain classes of Riemannian manifolds of bounded geometry, and finite direct sums of any combinations of these objects. On the other hand, an example is given of a two-dimensional Riemannian manifold $M$ of bounded geometry with $\lambda(M)=\infty$.
@article{RM_2005_60_6_a4,
     author = {A. Yu. Brudnyi and Yu. A. Brudnyi},
     title = {Simultaneous {Lipschitz} extensions},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {1057--1076},
     year = {2005},
     volume = {60},
     number = {6},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/RM_2005_60_6_a4/}
}
TY  - JOUR
AU  - A. Yu. Brudnyi
AU  - Yu. A. Brudnyi
TI  - Simultaneous Lipschitz extensions
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2005
SP  - 1057
EP  - 1076
VL  - 60
IS  - 6
UR  - http://geodesic.mathdoc.fr/item/RM_2005_60_6_a4/
LA  - en
ID  - RM_2005_60_6_a4
ER  - 
%0 Journal Article
%A A. Yu. Brudnyi
%A Yu. A. Brudnyi
%T Simultaneous Lipschitz extensions
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2005
%P 1057-1076
%V 60
%N 6
%U http://geodesic.mathdoc.fr/item/RM_2005_60_6_a4/
%G en
%F RM_2005_60_6_a4
A. Yu. Brudnyi; Yu. A. Brudnyi. Simultaneous Lipschitz extensions. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 60 (2005) no. 6, pp. 1057-1076. http://geodesic.mathdoc.fr/item/RM_2005_60_6_a4/

[1] L. Ahlfors, A. Beurling, “The boundary correspondence under quasiconformal mappings”, Acta Math., 96 (1956), 125–142 | DOI | MR | Zbl

[2] N. Aronszajn, N. Panitchpakdi, “Extension of uniformly continuous transformations in hyperconvex metric spaces”, Pacific J. Math., 6 (1956), 405–439 ; correction: Pacific J. Math., 7 (1957), 1729 | MR | Zbl | MR

[3] K. Ball, “Markov chains, Riesz transforms and Lipschitz maps”, Geom. Funct. Anal., 2:2 (1992), 137–172 | DOI | MR | Zbl

[4] Z. M. Balogh, M. Bonk, “Gromov hyperbolicity and the Kobayashi metric on strictly pseudoconvex domains”, Comment. Math. Helv., 75:3 (2000), 504–533 | DOI | MR | Zbl

[5] H. Bass, “The degree of polynomial growth of finitely generated groups”, Proc. London Math. Soc. (3), 25 (1972), 603–614 | DOI | MR | Zbl

[6] A. Borel, “Compact Clifford–Klein forms of symmetric spaces”, Topology., 2:2 (1963), 111–122 | DOI | MR | Zbl

[7] K. Borsuk, “Über Isomorphie der Funktionalräume”, Bull. Int. Acad. Polon. Sci. A, 1933, no. 1/3, 1–10 | Zbl

[8] J. Bourgain, “The metrical interpretation of superreflexivity in Banach spaces”, Israel J. Math., 56:2 (1986), 222–230 | DOI | MR | Zbl

[9] M. Bridson, A. Haefliger, Metric Spaces of Non-positive Curvature, Grundlehren Math. Wiss., 319, Springer-Verlag, Berlin, 1999 | MR | Zbl

[10] A. Brudnyi, Yu. Brudnyi, “Metric spaces with linear extensions preserving Lipschitz condition”, Amer. J. Math., 129:1 (2007), 217–314 ; arXiv: math/0404304 | MR

[11] A. Brudnyi, Yu. Brudnyi, “Linear and nonlinear extensions of Lipschitz functions from subsets of metric spaces”, Studia Math. (to appear)

[12] A. Brudnyi, Yu. Brudnyi, A universal Lipschitz extension property for products of Gromov hyperbolic spaces, Preprint, Univ. of Calgary, 2005

[13] Yu. Brudnyi, P. Shvartsman, “The Whitney problem of existence of a linear extension operator”, J. Geom. Anal., 7:4 (1997), 515–574 | MR | Zbl

[14] J. Cheeger, D. G. Ebin, Comparison Theorems in Riemannian Geometry, North-Holland Math. Library, 9, North-Holland, Amsterdam, 1975 | MR | Zbl

[15] J. Cheeger, M. Gromov, “Bounds of the von Neumann dimension of $L^2$-cohomology and the Gauss–Bonnet theorem for open manifolds”, J. Differential Geom., 21:1 (1985), 1–34 | MR | Zbl

[16] R. R. Coifman, G. Weiss, Analyse harmonique non-commutative sur certains espaces homogènes, Lecture Notes in Math., 242, Springer-Verlag, Berlin, 1971 | MR | Zbl

[17] J. Dugundji, “An extension of Tietze's theorem”, Pacific J. Math., 1 (1951), 353–367 | MR | Zbl

[18] G. B. Folland, E. M. Stein, Hardy Spaces on Homogeneous Groups, Math. Notes, 28, Princeton Univ. Press, Princeton, 1982 | MR | Zbl

[19] M. Gromov, “Hyperbolic groups”, Essays in Group Theory, Math. Sci. Res. Inst. Publ., 8, ed. S. M. Gersten, 1987, 75–263 | MR | Zbl

[20] M. Gromov, I. Piatetski-Shapiro, “Nonarithmetic groups in Lobachevsky spaces”, Inst. Hautes Études Sci. Publ. Math., 66 (1988), 93–103 | DOI | MR | Zbl

[21] W. B. Johnson, J. Lindenstrauss, G. Schechtman, “Extensions of Lipschitz maps into Banach spaces”, Israel J. Math., 54:2 (1986), 129–138 | DOI | MR | Zbl

[22] S. Kakutani, “Simultaneous extension of continuous functions considered as a positive linear operation”, Japan. J. Math., 17 (1940), 1–4 | MR | Zbl

[23] B. S. Kashin, “Poperechniki nekotorykh konechnomernykh mnozhestv i klassov gladkikh funktsii”, Izv. AN SSSR. Ser. matem., 41:2 (1977), 334–351 | MR | Zbl

[24] M. D. Kirszbraun, “Über die zusammenziehende und Lipschitsche Transformationen”, Fund. Math., 22 (1934), 77–108 | Zbl

[25] S. Kobayashi, Hyperbolic Manifolds and Holomorphic Mappings, Pure Appl. Math., 2, Dekker, New York, 1970 | MR | Zbl

[26] J. R. Lee, A. Naor, “Extending of Lipschitz functions via random metric partitions”, Invent. Math., 160:1 (2005), 59–95 | DOI | MR | Zbl

[27] J. Luukkainen, E. Saksman, “Every complete doubling metric space carries a doubling measure”, Proc. Amer. Math. Soc., 126:2 (1998), 531–534 | DOI | MR | Zbl

[28] M. B. Markus, G. Pisier, “Characterization of almost surely continuous $p$-stable random Fourier series and strongly stationary processes”, Acta Math., 152:3–4 (1984), 245–301 | DOI | MR

[29] J. Matoušek, “Extension of Lipschitz mappings on metric trees”, Comment. Math. Univ. Carolin., 31:1 (1990), 99–104 | MR | Zbl

[30] E. J. McShane, “Extension of range of functions”, Bull. Amer. Math. Soc., 40:12 (1934), 837–842 | DOI | Zbl

[31] A. Naor, “A phase transition phenomen between isometric and isomorphic extension problems for Hölder functions between $L_p$ spaces”, Mathematika, 48:1–2 (2001), 253–271 | MR | Zbl

[32] A. Yu. Ol'shanskii, “Almost every group is hyperbolic”, Internat. J. Algebra Comput., 2:1 (1992), 1–17 | DOI | MR

[33] A. Pełczyński, “Linear extensions, linear averagings, and their applications to linear topological classification of spaces of continuous functions”, Dissertationes Math. (Rozprawy Mat.), 58 (1968) | MR

[34] A. L. Volberg, S. V. Konyagin, “Na lyubom kompakte v $\mathbb R^n$ suschestvuet odnorodnaya mera”, Dokl. AN SSSR, 278:4 (1984), 783–786 | MR | Zbl

[35] H. Whitney, “Analytic extensions of differentiable functions defined in closed sets”, Trans. Amer. Math. Soc., 36 (1934), 63–89 | DOI | MR | Zbl