@article{RM_2005_60_6_a4,
author = {A. Yu. Brudnyi and Yu. A. Brudnyi},
title = {Simultaneous {Lipschitz} extensions},
journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
pages = {1057--1076},
year = {2005},
volume = {60},
number = {6},
language = {en},
url = {http://geodesic.mathdoc.fr/item/RM_2005_60_6_a4/}
}
A. Yu. Brudnyi; Yu. A. Brudnyi. Simultaneous Lipschitz extensions. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 60 (2005) no. 6, pp. 1057-1076. http://geodesic.mathdoc.fr/item/RM_2005_60_6_a4/
[1] L. Ahlfors, A. Beurling, “The boundary correspondence under quasiconformal mappings”, Acta Math., 96 (1956), 125–142 | DOI | MR | Zbl
[2] N. Aronszajn, N. Panitchpakdi, “Extension of uniformly continuous transformations in hyperconvex metric spaces”, Pacific J. Math., 6 (1956), 405–439 ; correction: Pacific J. Math., 7 (1957), 1729 | MR | Zbl | MR
[3] K. Ball, “Markov chains, Riesz transforms and Lipschitz maps”, Geom. Funct. Anal., 2:2 (1992), 137–172 | DOI | MR | Zbl
[4] Z. M. Balogh, M. Bonk, “Gromov hyperbolicity and the Kobayashi metric on strictly pseudoconvex domains”, Comment. Math. Helv., 75:3 (2000), 504–533 | DOI | MR | Zbl
[5] H. Bass, “The degree of polynomial growth of finitely generated groups”, Proc. London Math. Soc. (3), 25 (1972), 603–614 | DOI | MR | Zbl
[6] A. Borel, “Compact Clifford–Klein forms of symmetric spaces”, Topology., 2:2 (1963), 111–122 | DOI | MR | Zbl
[7] K. Borsuk, “Über Isomorphie der Funktionalräume”, Bull. Int. Acad. Polon. Sci. A, 1933, no. 1/3, 1–10 | Zbl
[8] J. Bourgain, “The metrical interpretation of superreflexivity in Banach spaces”, Israel J. Math., 56:2 (1986), 222–230 | DOI | MR | Zbl
[9] M. Bridson, A. Haefliger, Metric Spaces of Non-positive Curvature, Grundlehren Math. Wiss., 319, Springer-Verlag, Berlin, 1999 | MR | Zbl
[10] A. Brudnyi, Yu. Brudnyi, “Metric spaces with linear extensions preserving Lipschitz condition”, Amer. J. Math., 129:1 (2007), 217–314 ; arXiv: math/0404304 | MR
[11] A. Brudnyi, Yu. Brudnyi, “Linear and nonlinear extensions of Lipschitz functions from subsets of metric spaces”, Studia Math. (to appear)
[12] A. Brudnyi, Yu. Brudnyi, A universal Lipschitz extension property for products of Gromov hyperbolic spaces, Preprint, Univ. of Calgary, 2005
[13] Yu. Brudnyi, P. Shvartsman, “The Whitney problem of existence of a linear extension operator”, J. Geom. Anal., 7:4 (1997), 515–574 | MR | Zbl
[14] J. Cheeger, D. G. Ebin, Comparison Theorems in Riemannian Geometry, North-Holland Math. Library, 9, North-Holland, Amsterdam, 1975 | MR | Zbl
[15] J. Cheeger, M. Gromov, “Bounds of the von Neumann dimension of $L^2$-cohomology and the Gauss–Bonnet theorem for open manifolds”, J. Differential Geom., 21:1 (1985), 1–34 | MR | Zbl
[16] R. R. Coifman, G. Weiss, Analyse harmonique non-commutative sur certains espaces homogènes, Lecture Notes in Math., 242, Springer-Verlag, Berlin, 1971 | MR | Zbl
[17] J. Dugundji, “An extension of Tietze's theorem”, Pacific J. Math., 1 (1951), 353–367 | MR | Zbl
[18] G. B. Folland, E. M. Stein, Hardy Spaces on Homogeneous Groups, Math. Notes, 28, Princeton Univ. Press, Princeton, 1982 | MR | Zbl
[19] M. Gromov, “Hyperbolic groups”, Essays in Group Theory, Math. Sci. Res. Inst. Publ., 8, ed. S. M. Gersten, 1987, 75–263 | MR | Zbl
[20] M. Gromov, I. Piatetski-Shapiro, “Nonarithmetic groups in Lobachevsky spaces”, Inst. Hautes Études Sci. Publ. Math., 66 (1988), 93–103 | DOI | MR | Zbl
[21] W. B. Johnson, J. Lindenstrauss, G. Schechtman, “Extensions of Lipschitz maps into Banach spaces”, Israel J. Math., 54:2 (1986), 129–138 | DOI | MR | Zbl
[22] S. Kakutani, “Simultaneous extension of continuous functions considered as a positive linear operation”, Japan. J. Math., 17 (1940), 1–4 | MR | Zbl
[23] B. S. Kashin, “Poperechniki nekotorykh konechnomernykh mnozhestv i klassov gladkikh funktsii”, Izv. AN SSSR. Ser. matem., 41:2 (1977), 334–351 | MR | Zbl
[24] M. D. Kirszbraun, “Über die zusammenziehende und Lipschitsche Transformationen”, Fund. Math., 22 (1934), 77–108 | Zbl
[25] S. Kobayashi, Hyperbolic Manifolds and Holomorphic Mappings, Pure Appl. Math., 2, Dekker, New York, 1970 | MR | Zbl
[26] J. R. Lee, A. Naor, “Extending of Lipschitz functions via random metric partitions”, Invent. Math., 160:1 (2005), 59–95 | DOI | MR | Zbl
[27] J. Luukkainen, E. Saksman, “Every complete doubling metric space carries a doubling measure”, Proc. Amer. Math. Soc., 126:2 (1998), 531–534 | DOI | MR | Zbl
[28] M. B. Markus, G. Pisier, “Characterization of almost surely continuous $p$-stable random Fourier series and strongly stationary processes”, Acta Math., 152:3–4 (1984), 245–301 | DOI | MR
[29] J. Matoušek, “Extension of Lipschitz mappings on metric trees”, Comment. Math. Univ. Carolin., 31:1 (1990), 99–104 | MR | Zbl
[30] E. J. McShane, “Extension of range of functions”, Bull. Amer. Math. Soc., 40:12 (1934), 837–842 | DOI | Zbl
[31] A. Naor, “A phase transition phenomen between isometric and isomorphic extension problems for Hölder functions between $L_p$ spaces”, Mathematika, 48:1–2 (2001), 253–271 | MR | Zbl
[32] A. Yu. Ol'shanskii, “Almost every group is hyperbolic”, Internat. J. Algebra Comput., 2:1 (1992), 1–17 | DOI | MR
[33] A. Pełczyński, “Linear extensions, linear averagings, and their applications to linear topological classification of spaces of continuous functions”, Dissertationes Math. (Rozprawy Mat.), 58 (1968) | MR
[34] A. L. Volberg, S. V. Konyagin, “Na lyubom kompakte v $\mathbb R^n$ suschestvuet odnorodnaya mera”, Dokl. AN SSSR, 278:4 (1984), 783–786 | MR | Zbl
[35] H. Whitney, “Analytic extensions of differentiable functions defined in closed sets”, Trans. Amer. Math. Soc., 36 (1934), 63–89 | DOI | MR | Zbl