Non-local quasi-linear parabolic equations
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 60 (2005) no. 6, pp. 1021-1033

Voir la notice de l'article provenant de la source Math-Net.Ru

This is a survey of the most common approaches to quasi-linear parabolic evolution equations, a discussion of their advantages and drawbacks, and a presentation of an entirely new approach based on maximal $L_p$ regularity. The general results here apply, above all, to parabolic initial-boundary value problems that are non-local in time. This is illustrated by indicating their relevance for quasi-linear parabolic equations with memory and, in particular, for time-regularized versions of the Perona–Malik equation of image processing.
@article{RM_2005_60_6_a2,
     author = {H. Amann},
     title = {Non-local quasi-linear parabolic equations},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {1021--1033},
     publisher = {mathdoc},
     volume = {60},
     number = {6},
     year = {2005},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/RM_2005_60_6_a2/}
}
TY  - JOUR
AU  - H. Amann
TI  - Non-local quasi-linear parabolic equations
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2005
SP  - 1021
EP  - 1033
VL  - 60
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/RM_2005_60_6_a2/
LA  - en
ID  - RM_2005_60_6_a2
ER  - 
%0 Journal Article
%A H. Amann
%T Non-local quasi-linear parabolic equations
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2005
%P 1021-1033
%V 60
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/RM_2005_60_6_a2/
%G en
%F RM_2005_60_6_a2
H. Amann. Non-local quasi-linear parabolic equations. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 60 (2005) no. 6, pp. 1021-1033. http://geodesic.mathdoc.fr/item/RM_2005_60_6_a2/