@article{RM_2005_60_6_a12,
author = {M. Fila and H. Ninomiya},
title = {Reaction versus diffusion: blow-up induced and inhibited by diffusivity},
journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
pages = {1217--1235},
year = {2005},
volume = {60},
number = {6},
language = {en},
url = {http://geodesic.mathdoc.fr/item/RM_2005_60_6_a12/}
}
TY - JOUR AU - M. Fila AU - H. Ninomiya TI - Reaction versus diffusion: blow-up induced and inhibited by diffusivity JO - Trudy Matematicheskogo Instituta imeni V.A. Steklova PY - 2005 SP - 1217 EP - 1235 VL - 60 IS - 6 UR - http://geodesic.mathdoc.fr/item/RM_2005_60_6_a12/ LA - en ID - RM_2005_60_6_a12 ER -
M. Fila; H. Ninomiya. Reaction versus diffusion: blow-up induced and inhibited by diffusivity. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 60 (2005) no. 6, pp. 1217-1235. http://geodesic.mathdoc.fr/item/RM_2005_60_6_a12/
[1] K. N. Chueh, C. C. Conley, J. A. Smoller, “Positively invariant regions for systems of nonlinear diffusion equations”, Indiana Univ. Math. J., 26:2 (1977), 373–392 | DOI | MR | Zbl
[2] V. V. Churbanov, “Primer sistemy reaktsii s diffuziei, v kotoroi diffuzionnye chleny privodyat k vzryvu”, Dokl. AN SSSR, 310:6 (1990), 1308–1309 | MR | Zbl
[3] E. Conway, D. Hoff, J. Smoller, “Large time behavior of solutions of nonlinear reaction-diffusion equations”, SIAM J. Appl. Math., 35:1 (1978), 1–16 | DOI | MR | Zbl
[4] M. Fila, H. Matano, “Blow-up in nonlinear heat equations from the dynamical systems point of view”, Handbook of Dynamical Systems, 2, North-Holland, Amsterdam, 2002, 723–758 | MR
[5] M. Fila, H. Ninomiya, J. L. Vázquez, “Dirichlet boundary conditions can prevent blow-up in reaction-diffusion equations and systems”, Discrete Contin. Dynam. Systems A, 14:1 (2006), 63–74 | MR | Zbl
[6] Y. Giga, R. V. Kohn, “Characterizing blowup using similarity variables”, Indiana Univ. Math. J., 36:1 (1987), 1–40 | DOI | MR | Zbl
[7] M. Guedda, M. Kirane, “Diffusion terms in systems of reaction diffusion equations can lead to blow up”, J. Math. Anal. Appl., 218:1 (1998), 325–327 | DOI | MR | Zbl
[8] J. K. Hale, “Large diffusivity and asymptotic behavior in parabolic systems”, J. Math. Anal. Appl., 118:2 (1986), 455–466 | DOI | MR | Zbl
[9] H. A. Levine, “The role of critical exponents in blowup theorems”, SIAM Rev., 32:2 (1990), 262–288 | DOI | MR | Zbl
[10] C. P. Lo, A blowup problem of reaction diffusion equation related to the diffusion induced blowup phenomenon, arXiv: math/0307397
[11] N. Mizoguchi, H. Ninomiya, E. Yanagida, “Diffusion-induced blowup in a nonlinear parabolic system”, J. Dynam. Differential Equations, 10:4 (1998), 619–638 | DOI | MR | Zbl
[12] J. Morgan, “On a question of blow-up for semilinear parabolic systems”, Differential Integral Equations, 3:5 (1990), 973–978 | MR | Zbl
[13] H. Ninomiya, H. F. Weinberger, “Pest control may make the pest population explode”, Z. Angew. Math. Phys., 54:5 (2003), 869–873 | DOI | MR | Zbl
[14] H. Ninomiya, H. F. Weinberger, “On $p$-homogeneous systems of differential equations and their linear perturbation”, Appl. Anal., 85:1–3 (2006), 225–247 | DOI | MR | Zbl
[15] M. Pierre, D. Schmitt, “Blowup in reaction-diffusion systems with dissipation of mass”, SIAM. J. Math. Anal., 28:2 (1997), 259–269 | DOI | MR | Zbl
[16] M. Pierre, D. Schmitt, “Blowup in reaction-diffusion systems with dissipation of mass”, SIAM Rev., 42:1 (2000), 93–106 | DOI | MR | Zbl
[17] N. Rashevsky, “An approach to the mathematical biophysics of biological self-regulation and of cell polarity”, Bull. Math. Biophys., 2 (1940), 15–25 | DOI | MR
[18] A. A. Samarskii, V. A. Galaktionov, S. P. Kurdyumov, A. P. Mikhailov, Rezhimy s obostreniem v zadachakh dlya kvazilineinykh parabolicheskikh uravnenii, Nauka, M., 1987 | MR
[19] J. Smoller, Shock Waves and Reaction-Diffusion Equations, Grundlehren Math. Wiss., 258, Springer-Verlag, New York, 1983 | MR | Zbl
[20] Ph. Souplet, “A note on diffusion-induced blow-up”, J. Differential Equations (to appear)
[21] A. M. Turing, “The chemical basis of morphogenesis”, Philos. Trans. Roy. Soc. London, B237:641 (1952), 37–72 | DOI
[22] L. Wang, M. Y. Li, “Diffusion-driven instability in reaction-diffusion systems”, J. Math. Anal. Appl., 254:1 (2001), 138–153 | DOI | MR | Zbl
[23] M. Wang, Q. Zhang, “A note on a question of blow-up for semilinear parabolic equations”, J. Math. Anal. Appl., 198:1 (1996), 289–300 | DOI | MR | Zbl
[24] H. F. Weinberger, “Invariant sets for weakly coupled parabolic and elliptic systems”, Rend. Mat. (6), 8 (1975), 295–310 | MR | Zbl
[25] H. F. Weinberger, “An example of blowup produced by equal diffusions”, J. Differential Equations, 154:1 (1999), 225–237 | DOI | MR | Zbl
[26] E. Yanagida, “Mini-maximizers for reaction-diffusion systems with skew-gradient structure”, J. Differential Equations, 179:1 (2002), 311–335 | DOI | MR | Zbl
[27] T. Yoshizawa, Stability Theory by Liapunov's Second Method, Math. Soc. Japan, Tokyo, 1966 | MR | Zbl