Reaction versus diffusion: blow-up induced and inhibited by diffusivity
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 60 (2005) no. 6, pp. 1217-1235 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A survey is given of results on the relation of the dynamics of a system of ordinary differential equations to the dynamics of the corresponding reaction-diffusion system when diffusion is added. The main interest here is in the influence of diffusion on the global existence of solutions. Examples are presented of systems where diffusion induces or inhibits blow-up.
@article{RM_2005_60_6_a12,
     author = {M. Fila and H. Ninomiya},
     title = {Reaction versus diffusion: blow-up induced and inhibited by diffusivity},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {1217--1235},
     year = {2005},
     volume = {60},
     number = {6},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/RM_2005_60_6_a12/}
}
TY  - JOUR
AU  - M. Fila
AU  - H. Ninomiya
TI  - Reaction versus diffusion: blow-up induced and inhibited by diffusivity
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2005
SP  - 1217
EP  - 1235
VL  - 60
IS  - 6
UR  - http://geodesic.mathdoc.fr/item/RM_2005_60_6_a12/
LA  - en
ID  - RM_2005_60_6_a12
ER  - 
%0 Journal Article
%A M. Fila
%A H. Ninomiya
%T Reaction versus diffusion: blow-up induced and inhibited by diffusivity
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2005
%P 1217-1235
%V 60
%N 6
%U http://geodesic.mathdoc.fr/item/RM_2005_60_6_a12/
%G en
%F RM_2005_60_6_a12
M. Fila; H. Ninomiya. Reaction versus diffusion: blow-up induced and inhibited by diffusivity. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 60 (2005) no. 6, pp. 1217-1235. http://geodesic.mathdoc.fr/item/RM_2005_60_6_a12/

[1] K. N. Chueh, C. C. Conley, J. A. Smoller, “Positively invariant regions for systems of nonlinear diffusion equations”, Indiana Univ. Math. J., 26:2 (1977), 373–392 | DOI | MR | Zbl

[2] V. V. Churbanov, “Primer sistemy reaktsii s diffuziei, v kotoroi diffuzionnye chleny privodyat k vzryvu”, Dokl. AN SSSR, 310:6 (1990), 1308–1309 | MR | Zbl

[3] E. Conway, D. Hoff, J. Smoller, “Large time behavior of solutions of nonlinear reaction-diffusion equations”, SIAM J. Appl. Math., 35:1 (1978), 1–16 | DOI | MR | Zbl

[4] M. Fila, H. Matano, “Blow-up in nonlinear heat equations from the dynamical systems point of view”, Handbook of Dynamical Systems, 2, North-Holland, Amsterdam, 2002, 723–758 | MR

[5] M. Fila, H. Ninomiya, J. L. Vázquez, “Dirichlet boundary conditions can prevent blow-up in reaction-diffusion equations and systems”, Discrete Contin. Dynam. Systems A, 14:1 (2006), 63–74 | MR | Zbl

[6] Y. Giga, R. V. Kohn, “Characterizing blowup using similarity variables”, Indiana Univ. Math. J., 36:1 (1987), 1–40 | DOI | MR | Zbl

[7] M. Guedda, M. Kirane, “Diffusion terms in systems of reaction diffusion equations can lead to blow up”, J. Math. Anal. Appl., 218:1 (1998), 325–327 | DOI | MR | Zbl

[8] J. K. Hale, “Large diffusivity and asymptotic behavior in parabolic systems”, J. Math. Anal. Appl., 118:2 (1986), 455–466 | DOI | MR | Zbl

[9] H. A. Levine, “The role of critical exponents in blowup theorems”, SIAM Rev., 32:2 (1990), 262–288 | DOI | MR | Zbl

[10] C. P. Lo, A blowup problem of reaction diffusion equation related to the diffusion induced blowup phenomenon, arXiv: math/0307397

[11] N. Mizoguchi, H. Ninomiya, E. Yanagida, “Diffusion-induced blowup in a nonlinear parabolic system”, J. Dynam. Differential Equations, 10:4 (1998), 619–638 | DOI | MR | Zbl

[12] J. Morgan, “On a question of blow-up for semilinear parabolic systems”, Differential Integral Equations, 3:5 (1990), 973–978 | MR | Zbl

[13] H. Ninomiya, H. F. Weinberger, “Pest control may make the pest population explode”, Z. Angew. Math. Phys., 54:5 (2003), 869–873 | DOI | MR | Zbl

[14] H. Ninomiya, H. F. Weinberger, “On $p$-homogeneous systems of differential equations and their linear perturbation”, Appl. Anal., 85:1–3 (2006), 225–247 | DOI | MR | Zbl

[15] M. Pierre, D. Schmitt, “Blowup in reaction-diffusion systems with dissipation of mass”, SIAM. J. Math. Anal., 28:2 (1997), 259–269 | DOI | MR | Zbl

[16] M. Pierre, D. Schmitt, “Blowup in reaction-diffusion systems with dissipation of mass”, SIAM Rev., 42:1 (2000), 93–106 | DOI | MR | Zbl

[17] N. Rashevsky, “An approach to the mathematical biophysics of biological self-regulation and of cell polarity”, Bull. Math. Biophys., 2 (1940), 15–25 | DOI | MR

[18] A. A. Samarskii, V. A. Galaktionov, S. P. Kurdyumov, A. P. Mikhailov, Rezhimy s obostreniem v zadachakh dlya kvazilineinykh parabolicheskikh uravnenii, Nauka, M., 1987 | MR

[19] J. Smoller, Shock Waves and Reaction-Diffusion Equations, Grundlehren Math. Wiss., 258, Springer-Verlag, New York, 1983 | MR | Zbl

[20] Ph. Souplet, “A note on diffusion-induced blow-up”, J. Differential Equations (to appear)

[21] A. M. Turing, “The chemical basis of morphogenesis”, Philos. Trans. Roy. Soc. London, B237:641 (1952), 37–72 | DOI

[22] L. Wang, M. Y. Li, “Diffusion-driven instability in reaction-diffusion systems”, J. Math. Anal. Appl., 254:1 (2001), 138–153 | DOI | MR | Zbl

[23] M. Wang, Q. Zhang, “A note on a question of blow-up for semilinear parabolic equations”, J. Math. Anal. Appl., 198:1 (1996), 289–300 | DOI | MR | Zbl

[24] H. F. Weinberger, “Invariant sets for weakly coupled parabolic and elliptic systems”, Rend. Mat. (6), 8 (1975), 295–310 | MR | Zbl

[25] H. F. Weinberger, “An example of blowup produced by equal diffusions”, J. Differential Equations, 154:1 (1999), 225–237 | DOI | MR | Zbl

[26] E. Yanagida, “Mini-maximizers for reaction-diffusion systems with skew-gradient structure”, J. Differential Equations, 179:1 (2002), 311–335 | DOI | MR | Zbl

[27] T. Yoshizawa, Stability Theory by Liapunov's Second Method, Math. Soc. Japan, Tokyo, 1966 | MR | Zbl