Spaces on sets
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 60 (2005) no. 6, pp. 1195-1215 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

This paper deals with spaces $\mathfrak B^s_{pq}$ and $\mathfrak F^s_{pq}$ of positive smoothness $s>0$, based on $L_p$-spaces with $0$ and reproducing formulae for smooth functions. These spaces are compared with other $B$-spaces and $F$-spaces obtained by different means.
@article{RM_2005_60_6_a11,
     author = {H. Triebel},
     title = {Spaces on sets},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {1195--1215},
     year = {2005},
     volume = {60},
     number = {6},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/RM_2005_60_6_a11/}
}
TY  - JOUR
AU  - H. Triebel
TI  - Spaces on sets
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2005
SP  - 1195
EP  - 1215
VL  - 60
IS  - 6
UR  - http://geodesic.mathdoc.fr/item/RM_2005_60_6_a11/
LA  - en
ID  - RM_2005_60_6_a11
ER  - 
%0 Journal Article
%A H. Triebel
%T Spaces on sets
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2005
%P 1195-1215
%V 60
%N 6
%U http://geodesic.mathdoc.fr/item/RM_2005_60_6_a11/
%G en
%F RM_2005_60_6_a11
H. Triebel. Spaces on sets. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 60 (2005) no. 6, pp. 1195-1215. http://geodesic.mathdoc.fr/item/RM_2005_60_6_a11/

[1] D. R. Adams, L. I. Hedberg, Function Spaces and Potential Theory, Springer-Verlag, Berlin, 1996 | MR

[2] P. Assouad, “Plongements lipschitziens dans ${\mathbb R}^n$”, Bull. Soc. Math. France, 111:4 (1983), 429–448 | MR | Zbl

[3] O. V. Besov, V. P. Ilin, S. M. Nikolskii, Integralnye predstavleniya funktsii i teoremy vlozheniya, Nauka, M., 1975 | MR | Zbl

[4] M. Bricchi, “Complements and results on $h$-sets”, Function Spaces, Differential Operators and Nonlinear Analysis, Birkhäuser, Basel, 2003, 219–229 | MR | Zbl

[5] M. Bricchi, “Tailored Besov spaces and $h$-sets”, Math. Nachr., 263/264 (2004), 36–52 | DOI | MR | Zbl

[6] P. Bylund, Besov spaces and measures on arbitrary sets, Ph.D Thesis, University of Umeå, Umeå, 1994 | MR

[7] M. Christ, A. Seeger, Necessary conditions for vector-valued operator inequalities in harmonic analysis, arXiv: math/0504030 | MR

[8] R. A. DeVore, G. G. Lorentz, Constructive Approximation, Springer-Verlag, Berlin, 1993 | MR

[9] R. A. DeVore, R. C. Sharpley, “Besov spaces on domains in ${\mathbb R}^d$”, Trans. Amer. Math. Soc., 335:2 (1993), 843–864 | DOI | MR | Zbl

[10] D. E. Edmunds, H. Triebel, Function Spaces, Entropy Numbers, Differential Operators, Cambridge Univ. Press, Cambridge, 1996 | MR

[11] C. Fefferman, E. M. Stein, “Some maximal inequalities”, Amer. J. Math., 93 (1971), 107–115 | DOI | MR | Zbl

[12] M. Frazier, B. Jawerth, “A discrete transform and decompositions of distribution spaces”, J. Funct. Anal., 93:1 (1990), 34–170 | DOI | MR | Zbl

[13] M. Frazier, B. Jawerth, G. Weiss, Littlewood–Paley Theory and the Study of Function Spaces, Amer. Math. Soc., Providence, RI, 1991 | MR | Zbl

[14] P. Hajłasz, P. Koskela, “Sobolev met Poincaré”, Mem. Amer. Math. Soc., 145:688 (2000), 1–101 | MR

[15] Y. S. Han, E. T. Sawyer, “Littlewood–Paley theory on spaces of homogeneous type and classical function spaces”, Mem. Amer. Math. Soc., 110:530 (1994) | MR

[16] Y. Han, D. Yang, “New characterizations and applications of inhomogeneous Besov and Triebel–Lizorkin spaces on homogeneous type spaces and fractals”, Dissertationes Math. (Rozprawy Mat.), 403 (2002) | MR | Zbl

[17] Y. Han, D. Yang, “Triebel–Lizorkin spaces with non-doubling measures”, Studia Math., 162:2 (2004), 105–140 | DOI | MR | Zbl

[18] L. I. Hedberg, Yu. Netrusov, An axiomatic approach to function spaces, spectral synthesis, and Luzin approximation, Mem. Amer. Math. Soc., 882, Amer. Math. Soc., Providence, RI, 2007 | MR

[19] J. Heinonen, Lectures on Analysis on Metric Spaces, Springer-Verlag, New York, 2001 | MR | Zbl

[20] A. Jonsson, “Besov spaces on closed subsets of $\mathbb R^n$”, Trans. Amer. Math. Soc., 341:1 (1994), 355–370 | DOI | MR | Zbl

[21] P. Mattila, Geometry of Sets and Measures in Euclidean Spaces, Cambridge Univ. Press, Cambridge, 1995 | MR

[22] Yu. Netrusov, “Mnozhestva osobennostei funktsii iz prostranstv tipa Besova i Lizorkina–Tribelya”, Tr. MIAN, 187, 1989, 162–177 | MR

[23] S. M. Nikolskii, Priblizhenie funktsii mnogikh peremennykh i teoremy vlozheniya, Nauka, M., 1969 | MR

[24] S. L. Sobolev, Nekotorye primeneniya funktsionalnogo analiza v matematicheskoi fizike, Izd-vo Leningr. un-ta, L., 1950 | MR

[25] E. A. Storozhenko, P. Osvald, “Teorema Dzheksona v prostranstvakh $L^p(R^k)$, $0

1$”, Sib. matem. zhurn., 19:4 (1978), 888–901 | MR | Zbl

[26] A. Torchinsky, Real-variable Methods in Harmonic Analysis, Academic Press, Orlando, FL, 1986 | MR | Zbl

[27] H. Triebel, Theory of Function Spaces, Birkhäuser, Basel, 1983 ; Kh. Tribel, Teoriya funktsionalnykh prostranstv, Mir, M., 1986 | MR | Zbl | MR | Zbl

[28] H. Triebel, Theory of Function Spaces. II, Birkhäuser, Basel, 1992 | MR | Zbl

[29] H. Triebel, Fractals and Spectra. Related to Fourier Analysis and Function Spaces, Birkhäuser, Basel, 1997 | MR | Zbl

[30] H. Triebel, The Structure of Functions, Birkhäuser, Basel, 2001 | MR | Zbl

[31] H. Triebel, “Wavelet frames for distributions; local and pointwise regularity”, Studia Math., 154:1 (2003), 59–88 | DOI | MR | Zbl

[32] H. Triebel, “Fractal characteristics of measures: An approach via function spaces”, J. Fourier Anal. Appl., 9:4 (2003), 411–430 | DOI | MR | Zbl

[33] H. Triebel, “The positivity property of function spaces”, Proceedings of the Sixth Conference “Function Spaces” (Wroclaw, 2001), ed. R. Grzaslewicz et al., World Scientific, River Edge, NJ, 2003, 263–274 | MR | Zbl

[34] H. Triebel, “A new approach to function spaces on quasi-metric spaces”, Rev. Mat. Complut., 18:1 (2005), 7–48 | MR | Zbl

[35] H. Triebel, Theory of Function Spaces. III, Birkhäuser, Basel (to appear) | MR

[36] A. L. Volberg, S. V. Konyagin, “O merakh s usloviem udvoeniya”, Izv. AN SSSR. Ser. matem., 51:3 (1987), 666–675 | MR | Zbl

[37] P. Wojtaszczyk, A Mathematical Introduction to Wavelets, Cambridge Univ. Press, Cambridge, 1997 | MR | Zbl