Extremal problems for algebraic polynomials
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 60 (2005) no. 6, pp. 1183-1194

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $L(p)$ be a linear operator on the set of monic algebraic polynomials $p(z)= (z_1-z)(z_2-z)\dotsb(z_n-z)$ with $z_1z_2\dotsb z_n=1$. Of interest here is the value $$ [L]=\sup\bigl\{\min\{|L(p)(z_k)|:k=1,2,\dots,n\}:z_1z_2\dotsb z_n=1\bigr\} $$ for various linear operators. The motivation is that Smale's mean value conjecture may be formulated as $[L]=1-1/(n+1)$ for the linear operator $$ L(p)(z)=L\biggl(\sum_{k=0}^na_kz^k\biggr)=\sum_{k=0}^n\frac1{k+1}a_kz^k=\frac1z\int_0^zp(u)\,du, \enskip a_0=1, \ \ a_n=(-1)^n. $$
@article{RM_2005_60_6_a10,
     author = {B. Kh. Sendov},
     title = {Extremal problems for algebraic polynomials},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {1183--1194},
     publisher = {mathdoc},
     volume = {60},
     number = {6},
     year = {2005},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/RM_2005_60_6_a10/}
}
TY  - JOUR
AU  - B. Kh. Sendov
TI  - Extremal problems for algebraic polynomials
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2005
SP  - 1183
EP  - 1194
VL  - 60
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/RM_2005_60_6_a10/
LA  - en
ID  - RM_2005_60_6_a10
ER  - 
%0 Journal Article
%A B. Kh. Sendov
%T Extremal problems for algebraic polynomials
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2005
%P 1183-1194
%V 60
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/RM_2005_60_6_a10/
%G en
%F RM_2005_60_6_a10
B. Kh. Sendov. Extremal problems for algebraic polynomials. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 60 (2005) no. 6, pp. 1183-1194. http://geodesic.mathdoc.fr/item/RM_2005_60_6_a10/