Extremal problems for algebraic polynomials
    
    
  
  
  
      
      
      
        
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 60 (2005) no. 6, pp. 1183-1194
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			Let $L(p)$ be a linear operator on the set of monic algebraic polynomials $p(z)= (z_1-z)(z_2-z)\dotsb(z_n-z)$ with $z_1z_2\dotsb z_n=1$. Of interest here is the value
$$
[L]=\sup\bigl\{\min\{|L(p)(z_k)|:k=1,2,\dots,n\}:z_1z_2\dotsb z_n=1\bigr\}
$$
for various linear operators. The motivation is that Smale's mean value conjecture may be formulated as $[L]=1-1/(n+1)$ for the linear operator 
$$
L(p)(z)=L\biggl(\sum_{k=0}^na_kz^k\biggr)=\sum_{k=0}^n\frac1{k+1}a_kz^k=\frac1z\int_0^zp(u)\,du, \enskip a_0=1, \ \ a_n=(-1)^n.
$$
            
            
            
          
        
      @article{RM_2005_60_6_a10,
     author = {B. Kh. Sendov},
     title = {Extremal problems for algebraic polynomials},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {1183--1194},
     publisher = {mathdoc},
     volume = {60},
     number = {6},
     year = {2005},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/RM_2005_60_6_a10/}
}
                      
                      
                    B. Kh. Sendov. Extremal problems for algebraic polynomials. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 60 (2005) no. 6, pp. 1183-1194. http://geodesic.mathdoc.fr/item/RM_2005_60_6_a10/
