Tabulation of three-dimensional manifolds
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 60 (2005) no. 4, pp. 673-698 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The formation of tables of three-dimensional manifolds requires the development and computer realization of two algorithms: the listing algorithm and the recognition algorithm. In this paper the theoretical foundations of these algorithms are presented and a survey of results concerning the practical tabulation of three-dimensional manifolds is given.
@article{RM_2005_60_4_a5,
     author = {S. V. Matveev},
     title = {Tabulation of three-dimensional manifolds},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {673--698},
     year = {2005},
     volume = {60},
     number = {4},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/RM_2005_60_4_a5/}
}
TY  - JOUR
AU  - S. V. Matveev
TI  - Tabulation of three-dimensional manifolds
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2005
SP  - 673
EP  - 698
VL  - 60
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/RM_2005_60_4_a5/
LA  - en
ID  - RM_2005_60_4_a5
ER  - 
%0 Journal Article
%A S. V. Matveev
%T Tabulation of three-dimensional manifolds
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2005
%P 673-698
%V 60
%N 4
%U http://geodesic.mathdoc.fr/item/RM_2005_60_4_a5/
%G en
%F RM_2005_60_4_a5
S. V. Matveev. Tabulation of three-dimensional manifolds. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 60 (2005) no. 4, pp. 673-698. http://geodesic.mathdoc.fr/item/RM_2005_60_4_a5/

[1] G. Amendola, B. Martelli, “Non-orientable 3-manifolds of complexity up to 7”, Topology Appl., 133:2 (2003), 157–178 | DOI | MR | Zbl

[2] P. Bandieri, C. Gagliardi, L. Ricci, “Classifying genus two 3-manifolds up to 34 tetrahedra”, Acta Appl. Math., 86:3 (2005), 267–283 | DOI | MR | Zbl

[3] P. J. Callahan, M. V. Hildebrand, J. R. Weeks, “A census of cusped hyperbolic 3-manifolds”, Math. Comp., 68:225 (1999), 321–332 | DOI | MR | Zbl

[4] M. R. Casali, L. Grasselli, “2-symmetric crystallizations and 2-fold branched coverings of $S^3$”, Discrete Math., 87:1 (1991), 9–22 | DOI | MR | Zbl

[5] M. Ferri, C. Gagliardi, L. Grasselli, “A graph-theoretical representation of PL-manifolds – a survey on crystallizations”, Aequationes Math., 31:2–3 (1986), 121–141 | DOI | MR | Zbl

[6] W. Jaco, P. B. Shalen, “A new decomposition theorem for irreducible sufficiently large 3-manifolds”, Algebraic and Geometric Topology, Part 2 (Stanford, 1976), Proc. Sympos. Pure Math., 32, Amer. Math. Soc., Providence, RI, 1978, 71–84 | MR

[7] W. H. Jaco, P. B. Shalen, Seifert fibered spaces in 3-manifolds, Mem. Amer. Math. Soc., 21, no. 220, 1979 | MR

[8] K. Johannson, Homotopy Equivalences of 3-manifolds with Boundaries, Lecture Notes in Math., 761, Springer-Verlag, Berlin, 1979 | MR | Zbl

[9] S. Lins, Gems, Computers and Attractors for 3-manifolds, Knots Everything, 5, World Scientific, River Edge, 1995 | MR

[10] B. Martelli, Complexity of 3-manifolds, arXiv: math/0405250 | MR

[11] B. Martelli, C. Petronio, “Three-manifolds having complexity at moxt 9”, Experiment. Math., 10:2 (2001), 207–236 | MR | Zbl

[12] S. V. Matveev, V. V. Savvateev, “Trekhmernye mnogoobraziya, imeyuschie prostye spetsialnye spainy”, Colloq. Math., 32 (1974), 83–97 | MR | Zbl

[13] S. V. Matveev, “Slozhnost trekhmernykh mnogoobrazii i ikh perechislenie v poryadke vozrastaniya slozhnosti”, Dokl. AN SSSR, 301:2 (1988), 280–283

[14] S. Matveev, “Complexity theory of three-dimensional manifolds”, Acta Appl. Math., 19:2 (1990), 101–130 | MR | Zbl

[15] S. V. Matveev, Large tables of 3-manifolds up to complexity 6, Preprint MPI 1998-67, Max-Planck Institute for Mathematics, Bonn, 1998

[16] S. Matveev, Algoritghmic Topology and Classification of 3-manifolds, Algorithms Comput. Math., 9, Springer-Verlag, Berlin, 2003

[17] S. V. Matveev, “Raspoznavanie i tabulirovanie trekhmernykh mnogoobrazii”, Dokl. RAN, 400:1 (2005), 26–28 | MR

[18] S. V. Matveev, A. T. Fomenko, “Izoenergeticheskie poverkhnosti integriruemykh gamiltonovykh sistem, perechislenie trekhmernykh mnooobrazii v poryadke vozrastaniya ikh slozhnosti i vychislenie ob'emov zamknutykh giperbolicheskikh mnogoobrazii”, UMN, 43:1 (1988), 5–22 | MR | Zbl

[19] S. V. Matveev, A. T. Fomenko, Algoritmicheskie i kompyuternye metody v trekhmernoi topologii, Nauka, M., 1998

[20] A. M. Ovchinnikov, Postroenie spetsialnykh splainov trekhmernykh mnogoobrazii Valdkhauzena, Diss. ... kand. fiz.-matem. nauk, ChelGU, Chelyabinsk, 2000

[21] P. Skott, Geometrii na trekhmernykh mnogoobraziyakh, Mir, M., 1986

[22] M. V. Sokolov, “Kakie linzovye prostranstva razlichayutsya invariantami Turaeva–Viro”, Matem. zametki, 61:3 (1997), 468–470 | MR | Zbl

[23] W. Thurston, “Three-dimensional manifolds, Kleinian groups and hyperbolic geometry”, Bull. Amer. Math. Soc., 6:3 (1982), 357–381 | DOI | MR

[24] U. Tërston [Torston], Trekhmernaya geometriya i topologiya na trekhmernykh mnogoobraziyakh, MTsNMO, M., 2001

[25] V. G. Turaev, O. Y. Viro, “State sum invariants of 3-manifolds and quantum 6$j$-symbol”, Topology, 31:4 (1992), 865–902 | DOI | MR | Zbl

[26] I. A. Volodin, V. E. Kuznetsov, A. T. Fomenko, “O probleme algoritmicheskogo raspoznavaniya standartnoi trekhmernoi sfery”, UMN, 29:5 (1974), 71–168 | MR | Zbl

[27] F. Waldhausen, “Eine Klasse von 3-dimensionalen Mannigfaltigkeiten. I, II”, Invent. Math., 3 (1967), 308–333 ; 4, 87–117 | DOI | MR | Zbl | DOI

[28] J. Weeks, Hyperbolic Structures on 3-manifolds, Ph.D. Thesis, Princeton University, Princeton, 1985

[29] J. Weeks, SnapPea, A computer program for creating and studying hyperbolic 3-manifolds, ftp://geom.umn.edu/pub/sofware/snappea