The Osgood–Schoenflies theorem revisited
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 60 (2005) no. 4, pp. 645-672 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The very first unknotting theorem of a purely topological character established that every compact subset of the Euclidean plane homeomorphic to a circle can be moved onto a round circle by a globally defined self-homeomorphism of the plane. This difficult hundred-year-old theorem is here celebrated with a partly new elementary proof, and a first but tentative account of its history. Some quite fundamental corollaries of the proof are sketched, and some generalizations are mentioned.
@article{RM_2005_60_4_a4,
     author = {L. Siebenmann},
     title = {The {Osgood{\textendash}Schoenflies} theorem revisited},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {645--672},
     year = {2005},
     volume = {60},
     number = {4},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/RM_2005_60_4_a4/}
}
TY  - JOUR
AU  - L. Siebenmann
TI  - The Osgood–Schoenflies theorem revisited
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2005
SP  - 645
EP  - 672
VL  - 60
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/RM_2005_60_4_a4/
LA  - en
ID  - RM_2005_60_4_a4
ER  - 
%0 Journal Article
%A L. Siebenmann
%T The Osgood–Schoenflies theorem revisited
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2005
%P 645-672
%V 60
%N 4
%U http://geodesic.mathdoc.fr/item/RM_2005_60_4_a4/
%G en
%F RM_2005_60_4_a4
L. Siebenmann. The Osgood–Schoenflies theorem revisited. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 60 (2005) no. 4, pp. 645-672. http://geodesic.mathdoc.fr/item/RM_2005_60_4_a4/

[1] J. W. Alexander, “A proof of Jordan's theorem about a simply closed curve”, Ann. Math. (2), 21 (1920), 180–184 | DOI | MR | Zbl

[2] J. W. Alexander, “Remarks on a point set constructed by Antoine”, Nat. Acad. Proc., 10 (1924), 1–2 | DOI

[3] J. W. Alexander, “An example of a simply connected surface bounding a region which is not simply connected”, Nat. Acad. Proc., 10 (1924), 8–10 | DOI

[4] J. W. Alexander, “On the deformation of an $n$-cell”, Bull. Amer. Math. Soc., 30 (1924), 10

[5] P. S. Alexandroff, “Die Topologie in und um Holland in der Jahren 1920–1930”, Nieuw Arch. Wisk., 17:3 (1969), 109–127 | MR

[6] L. Antoine, “Sur l'homéomorphie de deux figures et de leur voisinages”, J. Math., 8 (1921), 221–325 | Zbl

[7] L. Antoine, “Sur les voisinages de deux figures homéomorphes”, Fund. Math., 5 (1924), 265–287 | Zbl

[8] M. Barge, K. Kuperberg, “Periodic points from periodic prime ends”, Topology Proc., 23:Spring (1998), 13–21 | MR | Zbl

[9] R. H. Bing, “Complementary domains of continuous curves”, Fund. Math., 36 (1949), 303–318 | MR | Zbl

[10] R. H. Bing, “Approximating surfaces with polyhedral ones”, Ann. of Math. (2), 65 (1957), 465–483 | MR

[11] R. H. Bing, “Conditions under which a surface in $E^3$ is tame”, Fund. Math., 47 (1959), 105–139 | MR | Zbl

[12] R. H. Bing, “A surface is tame if its complement is 1-ULC”, Trans. Amer. Math. Soc., 101 (1961), 294–305 | DOI | MR | Zbl

[13] R. H. Bing, The geometric Topology of 3-Manifolds, Amer. Math. Soc. Colloq. Publ., 40, Amer. Math. Soc., Providence, RI, 1983 | MR | Zbl

[14] B. Brechner, M. Brown, “Mapping cylinder neighborhoods in the plane”, Proc. Amer. Math. Soc., 84:3 (1982), 433–436 | DOI | MR | Zbl

[15] L. E. J. Brouwer, “Beweis des Jordanschen Kurvensatzes”, Math. Ann., 69 (1910), 169–175 | DOI | MR | Zbl

[16] L. E. J. Brouwer, “Zur Invarianz des $n$-dimensionalen Gebiets”, Math. Ann., 72 (1912), 55–56 | DOI | MR | Zbl

[17] M. Brown, “A proof of the generalized Schoenflies theorem”, Bull. Amer. Math. Soc., 66 (1960), 74–76 | DOI | MR | Zbl

[18] M. Brown, “Locally flat imbeddings of topological manifolds”, Ann. of Math. (2), 75 (1962), 331–341 | DOI | MR | Zbl

[19] S. S. CairnsS. S., “An elementary proof of the Jordan–Schoenflies theorem”, Proc. Amer. Math. Soc., 2 (1951), 860–867 | DOI | MR

[20] C. Carathéodory, “Zur Ränderzuordnung bei konformer Abbildung”, Gött. Nachr., 1913, 509–518 | Zbl

[21] C. Carathéodory, “Über die gegenseitige Beziehung der Ränder bei der konformen Abbildung des Inneren einer Jordanschen Kurve auf einen Kreis”, Math. Ann., 73 (1913), 305–320 | DOI | MR | Zbl

[22] C. Carathéodory, “Über die Begrenzung einfach zusammenhängender Gebiete”, Math. Ann., 73 (1913), 323–370 | DOI | MR | Zbl

[23] T. A. Chapman, “Shapes of finite-dimensional compacta”, Fund. Math., 76:3 (1972), 261–276 | MR | Zbl

[24] A. V. Chernavskii, “Sovpadenie lokalnoi ploskostnosti i lokalnoi odnosvyaznosti dlya vlozhenii $(n-1)$-mernykh mnogoobrazii v $n$-mernye pri $n>4$”, Matem. sb., 91:2 (1973), 279–286 | MR

[25] R. Courant, “Über die Existenztheoreme der Potential- und Funktionentheorie”, J. Math., 144 (1914), 190–211 | Zbl

[26] R. J. Daverman, “Locally nice codimension one manifolds are locally flat”, Bull. Amer. Math. Soc., 79 (1973), 410–413 | DOI | MR | Zbl

[27] R. J. Daverman, Decompositions of Manifolds, Pure Appl. Math., 124, Academic Press, Orlando, FL, 1986 | MR | Zbl

[28] A. Dold, Lectures on Algebraic Topology, Springer-Verlag, Berlin, 1972 ; Reprinted 1995; A. Donald, Lektsii po algebraicheskoi topologii, Mir, M., 1976 | MR | MR

[29] A. Dold, “A simple proof of the Jordan-Alexander complement theorem”, Amer. Math. Monthly, 100 (1993), 856–857 | DOI | MR | Zbl

[30] M. Dostál, R. Tindell, “The Jordan curve theorem revisited”, Jahresber. Deutsch. Math.-Verein., 80 (1978), 111–128 | MR | Zbl

[31] J. Dugundji, Topology, Allyn and Bacon, Boston, 1966 ; Reprinted 1978 | MR | Zbl

[32] D. B. A. Epstein, “Pointwise periodic homeomorphisms”, Proc. London Math. Soc. (3), 42:3 (1981), 415–460 | DOI | MR | Zbl

[33] M. H. Freedman, F. Quinn, Topology of 4-manifolds, Princeton Math. Ser., 39, Princeton Univ. Press, Princeton, 1990 | MR | Zbl

[34] H. Guggenheimer, “The Jordan curve theorem and an unpublished manuscript by Max Dehn”, Arch. Hist. Exact Sci., 17 (1977), 193–200 | DOI | MR | Zbl

[35] D. W. Hall, G. L. Spencer, Elementary Topology, Wiley/Chapman Hall, New York/London, 1955 | MR

[36] M. W. Hirsch, Differential topology, Grad. Texts in Math., 33, Springer-Verlag, New York–Heidelberg, 1976, 1994 | MR | Zbl

[37] Jahrbuch über die Fortschritte der Mathematik, 1868–1942

[38] C. Jordan, “Recherches sur les polyèdres. I, II”, J. Reine Angew. Math., 66 (1866), 22–72 ; J. Reine Angew. Math., 1868, 297–349 | Zbl | Zbl

[39] C. Jordan, Cours d'analyse de l'École Polytechnique. V. III: Calcul Intégrale, Gauthier-Villars, Paris, 1887 | Zbl

[40] L. V. Keldysh, Topologicheskie vlozheniya v evklidovo prostranstvo, Tr. MIAN, 81, 1966 | Zbl

[41] R. C. Kirby, L. C. Siebenmann, “On the triangulation of manifolds and the Hauptvermutung”, Bull. Amer. Math. Soc., 75 (1969), 742–749 | DOI | MR | Zbl

[42] R. C. Kirby, L. C. Siebenmann, Foundational essays on topological manifolds, smoothings, and triangulations, Ann. of Math. Stud., 88, Princeton Univ. Press, Princeton, NJ, 1977 | MR | Zbl

[43] P. Koebe, “Ränderzuordnung bei konformer Abbildung”, Gött. Nachr., 1913, 286–288 | Zbl

[44] P. Koebe, “Das Uniformisierungstheorem und seine Bedeutung für Funktionentheorie und nichteuklidische Geometrie”, Annali di Mat. (3), 21 (1913), 57–64 | Zbl

[45] P. Koebe, “Abhandlungen zur Theorie der konformen Abbildung: I. Die Kreisabbildung des allgemeinsten einfach und zweifach zusammenhängenden schlichten Bereichs und die Ränderzuordnung bei konformer Abbildung”, J. für Math., 145 (1915), 177–225 | Zbl

[46] C. Kuratowski, Topologie. II. Espaces compactes, espaces connexes, plan euclidien, Monografie Matematyczne, 21, Seminarium Matematyczne Uniwersytetu., Warszawa–Wroclaw, 1950 | MR | Zbl

[47] F. Latour, “Double suspension d'une sphère d'homologie [d'après R. Edwards]”, Lecture Notes in Math., 710, 1979, 169–186 | MR | Zbl

[48] J. N. Mather, “Area preserving twist homeomorphism of the annulus”, Comment. Math. Helv., 54 (1979), 397–404 | DOI | MR | Zbl

[49] J. N. Mather, “Topological proofs of some purely topological consequences of Carathéodory's theory of prime ends”, Selected Studies: Physics-astrophysics, Mathematics, History of Science, North-Holland, Amsterdam–New York, 1982, 225–255 | MR

[50] B. Mazur, “On embeddings of spheres”, Acta Math., 105:1 (1961), 1–17 | DOI | MR | Zbl

[51] J. W. Milnor, Topology from the Differentiable Viewpoint, Univ. of Virginia Press, Charlottesville, 1965 ; Princeton Univ. Press, Princeton, 1997 | MR | Zbl

[52] B. Mohar, C. Thomassen, Graphs on Surfaces, Johns Hopkins Univ. Press, Baltimore, 2001 | MR | Zbl

[53] E. E. Moise, “Affine structures in 3-manifolds. V. The triangulation theorem and Hauptvermutung”, Ann. of Math. (2), 56 (1952), 96–114 | DOI | MR | Zbl

[54] E. E. Moise, Geometric topology in dimensions 2 and 3, Graduate Texts in Math., 47, Springer-Verlag, New York–Heidelberg, 1977 | MR | Zbl

[55] R. L. Moore, “Conditions under which one of two given closed linear point sets may be thrown into the other one by a continuous transformation of a plane into itself”, Amer. J., 48 (1926), 67–72 | MR | Zbl

[56] R. L. Moore, Foundations of point set theory, Amer. Math. Soc. Colloq. Publ., 13, Amer. Math. Soc., New York, 1932 | MR | Zbl

[57] M. H. A. Newman, Elements of the Topology of Plane Sets of Points, 1st edition 1939, 2nd edition 1951, reprinted 1954, 1961, University Press, Cambridge | MR | Zbl

[58] W. F. Osgood, “On the existence of the Green's function for the most general symply connected plane region”, Trans. Amer. Math. Soc., 1 (1900), 310–314 | DOI | MR | Zbl

[59] W. F. Osgood, “A Jordan curve of positive area”, Trans. Amer. Math. Soc., 4 (1903), 107–112 | DOI | MR | Zbl

[60] W. F. Osgood, “On the transformation of the boundary in the case of conformal mapping”, Bull. Amer. Math. Soc. (2), 9 (1902), 233–235 | DOI | Zbl

[61] W. F. Osgood, E. H. Taylor, “Conformal transformations on the boundaries of their regions of definition”, Trans. Amer. Math. Soc., 14 (1913), 277–298 | DOI | MR | Zbl

[62] T. M. Price, C. L. Seebeck III, “Somewhere locally flat codimension one manifolds with 1-ULC complements are locally flat”, Trans. Amer. Math. Soc., 193 (1974), 111–122 | DOI | MR | Zbl

[63] F. Quinn, “Lectures on controlled topology: mapping cylinder neighborhoods”, Topology of high-dimensional manifolds, ICTP Lect. Notes., 9, no. 1, 2, Abdus Salam International Centre for Theoretical Physics, Trieste, 2002, 461–489 | MR | Zbl

[64] T. Radó T, “Über den Begriff der Riemannschen Fläche”, Acta Szeged., 2 (1925), 101–121 | Zbl

[65] C. P. Rourke, B. J. Sanderson, Introduction to piecewise-linear topology, Ergebnisse der Mathematik und ihrer Grenzgebiete, 69, Springer-Verlag, New York, 1972 | MR | Zbl

[66] A. Schoenflies, “Ueber einen Satz aus der Analysis situs”, Gött. Nachr., 1896, 7–9

[67] A. Schoenflies, “Ueber einen Satz aus der Analysis situs”, Gött. Nachr., 1899, 282–290 | Zbl

[68] A. Schoenflies, “Über einen grundlegenden Satz der Analysis situs”, Gött. Nachr., 1902, 185–192 | Zbl

[69] A. Schoenflies, “Beiträge zur Theorie der Punktmengen. III”, Math. Ann., 62 (1906), 286–328 | DOI | MR | Zbl

[70] A. Schoenflies, “Bemerkungen zu den Beweisen von C. Jordan und Ch. J. de la Vallée-Poussin”, Jahresber. Deutsch. Math.-Verein., 33 (1924), 157–160

[71] L. C. Siebenmann, “Topological manifolds”, Actes du Congrès International des Mathematicians (Nice, 1970), 2, Gauthier-Villars, Paris, 1971, 133–163 | MR

[72] E. Study, Vorlesungen über ausgewählte Gegenstände der Geometrie, Zweites Heft. Herausgegeben unter Mitwirkung von W. Blaschke “Konforme Abbildung einfach zusammenhängender Bereiche”, Teubner, Leipzig–Berlin, 1913 | Zbl

[73] H. Tietze, “Sur les représentations continues des surfaces sur elles-mêmes”, Acad. Sci. Paris, 157 (1913), 509–512 | Zbl

[74] H. Tietze, “Über stetige Abbildungen einer Quadratfläche auf sich selbst”, Rend. Mat. Palermo, 38 (1914), 247–304 | DOI | Zbl

[75] H. Tietze, “Über Funktionen, die auf einer abgeschlossenen Menge stetig sind”, J. für Math., 145 (1914), 9–14 | Zbl

[76] T. tom Dieck, Topologie, de Gruyter, Berlin, 1991, 2000 | MR | Zbl

[77] P. Urysohn, “Über ein Problem von Herrn C. Carathéodory”, Fund. Math., 6 (1924), 229–235 | Zbl

[78] P. Urysohn, “Sur les points accessibles des ensembles fermés”, Proc. Akad. Wiss. Amsterdam, 94 (1925), 984–993

[79] P. Urysohn, “Über die Mächtigkeit der zusammenhängenden Mengen”, Math. Ann., 94 (1925), 262–295 | DOI | MR | Zbl

[80] P. Urysohn, “Mémoire sur les multiplicités Cantoriennes. III: Les lignes Cantoriennes”, Verhandelingen der Koninklijke Nederlandse Akademie van Wetenschappen Amsterdam. 1 sectie, 13:4 (1928)

[81] P. S. Uryson, Trudy po topologii i drugim oblastyam matematiki, 2, Gostekhizdat, M.–L., 1951 | MR

[82] O. Veblen, “Theory of plane curves in non-metrical analysis situs”, Trans. Amer. Math. Soc., 6 (1905), 83–98 | DOI | MR | Zbl

[83] B. von Kerékjártó, Vorlesungen über Topologie. I: Flächentopologie, Grundlehren Math. Wiss., 8, Springer, Berlin, 1923 | Zbl

[84] G. T. Whyburn, Analytic Topology, Amer. Math. Soc. Colloq. Publ., 28, Amer. Math. Soc., Providence, RI, 1942, 1948, 1963 | MR | Zbl

[85] G. T. Whyburn, Topological Analysis, Princeton Math. Ser., 23, Princeton Univ. Press, Princeton, 1964 | MR | Zbl

[86] G. T. Whyburn, E. Duda, Dynamic Topology, Springer-Verlag, Berlin–Heidelberg, 1979 | MR | Zbl

[87] R. L. Wilder, Topology of Manifolds, Amer. Math. Soc. Colloq. Publ., 32, Amer. Math. Soc., Providence, RI, 1949, 1963, 1979 | MR | Zbl

[88] L. Zippin, “On continuous curves and the Jordan curve theorem”, Amer. J. Math., 52 (1930), 331–350 | DOI | MR | Zbl