Computation of characteristic classes of a manifold from a triangulation of it
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 60 (2005) no. 4, pp. 615-644 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

This paper is devoted to the well-known problem of computing the Stiefel–Whitney classes and the Pontryagin classes of a manifold from a given triangulation of the manifold. In 1940 Whitney found local combinatorial formulae for the Stiefel–Whitney classes. The first combinatorial formula for the first rational Pontryagin class was found by Gabrielov, Gel'fand, and Losik in 1975. Since then, different authors have constructed several different formulae for the rational characteristic classes of a triangulated manifold, but none of these formulae provides an algorithm that computes the characteristic cycle solely from a triangulation of the manifold. In this paper a new local combinatorial formula recently found by the author for the first Pontryagin class is described; it provides the desired algorithm. This result uses a solution of the following problem: construct a function $f$ on the set of isomorphism classes of three-dimensional PL-spheres such that for any combinatorial manifold the chain obtained by taking each simplex of codimension four with coefficient equal to the value of the function on the link of the simplex is a cycle.
@article{RM_2005_60_4_a3,
     author = {A. A. Gaifullin},
     title = {Computation of characteristic classes of a~manifold from a triangulation of~it},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {615--644},
     year = {2005},
     volume = {60},
     number = {4},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/RM_2005_60_4_a3/}
}
TY  - JOUR
AU  - A. A. Gaifullin
TI  - Computation of characteristic classes of a manifold from a triangulation of it
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2005
SP  - 615
EP  - 644
VL  - 60
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/RM_2005_60_4_a3/
LA  - en
ID  - RM_2005_60_4_a3
ER  - 
%0 Journal Article
%A A. A. Gaifullin
%T Computation of characteristic classes of a manifold from a triangulation of it
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2005
%P 615-644
%V 60
%N 4
%U http://geodesic.mathdoc.fr/item/RM_2005_60_4_a3/
%G en
%F RM_2005_60_4_a3
A. A. Gaifullin. Computation of characteristic classes of a manifold from a triangulation of it. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 60 (2005) no. 4, pp. 615-644. http://geodesic.mathdoc.fr/item/RM_2005_60_4_a3/

[1] V. A. Rokhlin, A. S. Shvarts, “O kombinatornoi invariantnosti klassov Pontryagina”, Dokl. AN SSSR, 114:3 (1957), 490–493 | MR | Zbl

[2] R. Thom, “Les classes charactéristiques de Pontrjagin des variétés triangulées”, Symposium Internacional de Topología Algebraica, La Universidad Nacional Autónoma de Mexico y la UNESCO, Mexico City, 1958, 54–67 | MR

[3] A. Ranicki, D. Sullivan, “A semi-local combinatorial formula for the signature of a $4k$-manifold”, J. Differential Geom., 11:1 (1976), 23–29 | MR | Zbl

[4] H. Whitney, “On the theory of sphere-bundles”, Proc. Natl. Acad. Sci. USA, 26:2 (1940), 148–153 | DOI | MR | Zbl

[5] A. M. Gabrielov, I. M. Gelfand, M. V. Losik, “Kombinatornoe vychislenie kharakteristicheskikh klassov. I, II”, Funkts. analiz i ego pril., 9:2 (1975), 12–28 ; 3, 5–26 | MR | Zbl | Zbl

[6] A. M. Gabrielov, I. M. Gelfand, M. V. Losik, “Lokalnaya kombinatornaya formula dlya pervogo klassa Pontryagina”, Funkts. analiz i ego pril., 10:1 (1976), 14–17 | MR | Zbl

[7] R. MacPherson, “The combinatorial formula of Gabrielov, Gel'fand and Losik for the first Pontrjagin class”, Lecture Notes in Math., 677, 1978, 105–124 | MR | Zbl

[8] A. M. Gabrielov, “Kombinatornye formuly dlya klassov Pontryagina i $GL$-invariantnye tsepi”, Funkts. analiz i ego pril., 12:2 (1978), 1–7 | MR | Zbl

[9] I. M. Gelfand, R. D. MacPherson, “A combinatorial formula for the Pontrjagin classes”, Bull. Amer. Math. Soc. (N.S.), 26:2 (1992), 304–309 | DOI | MR | Zbl

[10] J. Cheeger, “Spectral geometry of singular Riemannian spaces”, J. Differential Geom., 18:4 (1983), 575–657 | MR | Zbl

[11] M. F. Atiyah, V. K. Patodi, I. M. Singer, “Spectral asymmetry and Riemannian geometry”, Bull. London Math. Soc., 5:2 (1973), 229–234 | DOI | MR | Zbl

[12] A. A. Gaifullin, “Lokalnye formuly dlya kombinatornykh klassov Pontryagina”, Izv. RAN. Ser. matem., 68:5 (2004), 13–66 | MR

[13] L. S. Pontryagin, “Vektornye polya na mnogoobraziyakh”, Matem. sb., 24:2 (1949), 129–162 | MR | Zbl

[14] L. S. Pontryagin, “Nekotorye topologicheskie invarianty rimanovykh mnogoobrazii”, Dokl. AN SSSR, 43:3 (1944), 95–98 | MR

[15] L. S. Pontryagin, “Nekotorye topologicheskie invarianty zamknutykh rimanovykh mnogoobrazii”, Izv. AN SSSR. Ser. matem., 13:2 (1949), 125–162 | MR | Zbl

[16] S. S. Chern, “Characteristic classes of Hermitian manifolds”, Ann. of Math. (2), 47:1 (1946), 85–121 | DOI | MR | Zbl

[17] N. Levitt, C. Rourke, “The existence of combinatorial formulae for characteristic classes”, Trans. Amer. Math. Soc., 239 (1978), 391–397 | DOI | MR | Zbl

[18] E. Stiefel, “Richtungsfelder und Fernparallelismus in $n$-dimensionalen Mannigfaltigkeiten”, Comment. Math. Helv., 8 (1936), 305–353 | DOI | MR | Zbl

[19] S. Halperin, D. Toledo, “Stiefel–Whitney homology classes”, Ann. of Math. (2), 96:3 (1972), 511–525 | DOI | MR | Zbl

[20] J. Cheeger, “A combinatorial formula for Stiefel–Whitney classes”, Topology of Manifolds, Proc. Univ. of Georgia (Athens, Ga, 1969), Markham, Chicago, 1970, 470–471

[21] S. S. Cairns, “Triangulated manifolds which are not Brouwer manifolds”, Ann. of Math. (2), 41:4 (1940), 792–795 | DOI | MR | Zbl

[22] J. H. C. Whitehead, “Note on manifolds”, Quart. J. Math. Oxford Ser. (2), 12:45 (1941), 26–29 | DOI | MR | Zbl

[23] S. S. Cairns, “Isotropic deformations of geodesic complexes on the $2$-sphere and on the plane”, Ann. of Math. (2), 45:2 (1944), 207–217 | DOI | MR | Zbl

[24] C.-W. Ho, “On certain homotopy properties of some spaces of linear and piecewise linear homeomorphisms. I, II”, Trans. Amer. Math. Soc., 181 (1973), 213–233; 235–243 | DOI | MR | Zbl

[25] V. A. Rokhlin, “Vnutrennee opredelenie kharakteristicheskikh tsiklov Pontryagina”, Dokl. AN SSSR, 84:3 (1952), 449–452 | MR | Zbl

[26] V. M. Bukhshtaber, “Topologicheskie prilozheniya teorii dvuznachnykh formalnykh grupp”, Izv. AN SSSR. Ser. matem., 42:1 (1978), 130–184 | MR | Zbl

[27] V. M. Bukhshtaber, “Kharakteristicheskie klassy v kobordizmakh i topologicheskie prilozheniya teorii odnoznachnykh i dvuznachnykh formalnykh grupp”, Itogi nauki i tekhniki. Sovremennye problemy matematiki, 10, 1978, 5–178 | MR

[28] A. Björner, M. Las Vergnas, B. Sturmfels, N. White, G. Ziegler, Oriented Matroids, Encyclopedia Math. Appl., 46, Cambridge Univ. Press, Cambridge, 1993 | MR | Zbl

[29] G. Ziegler, Lectures on Polytopes, Grad. Texts in Math., 152, Springer-Verlag, New York, 1995 | MR | Zbl

[30] R. Tom, “Nekotorye svoistva “v tselom” differentsiruemykh mnogoobrazii”, Rassloennye prostranstva, IL, M., 1958, 291–348

[31] P. L. King, “On local combinatorial Pontrjagin numbers. I”, Topology, 16:1 (1977), 99–105 | DOI | MR | Zbl

[32] U. Pachner, “P.L. homeomorphic manifolds are equivalent by elementary shellings”, European J. Combin., 12:2 (1991), 129–145 | MR | Zbl

[33] V. M. Bukhshtaber, T. E. Panov, Toricheskie deistviya v topologii i kombinatorike, MTsNMO, M., 2004 | MR

[34] E. Steinitz, H. Rademacher, Vorlesungen über die Theorie der Polyeder unter Einschluss der Elemente der Topologie, Springer-Verlag, Berlin, 1934 ; Reprint: Springer-Verlag, 1976 | MR | Zbl | Zbl

[35] M. È. Kazarian, “The Chern–Euler number of circle bundle via singularity theory”, Math. Scand., 82:2 (1998), 207–236 | MR | Zbl

[36] W. Kühnel, T. F. Banchoff, “The 9-vertex complex projective plane”, Math. Intelligencer., 5:3 (1983), 11–22 | DOI | MR | Zbl

[37] W. Kühnel, G. Lassmann, “The unique 3-neighborly 4-manifold with few vertices”, J. Combin. Theory Ser. A, 35:2 (1983), 173–184 | DOI | MR | Zbl

[38] I. A. Volodin, V. E. Kuznetsov, A. T. Fomenko, “O probleme algoritmicheskogo raspoznavaniya standartnoi trekhmernoi sfery”, UMN, 29:5 (1974), 71–168 | MR | Zbl