@article{RM_2005_60_2_a1,
author = {V. I. Danilov and G. A. Koshevoy},
title = {Arrays and the combinatorics of {Young} tableaux},
journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
pages = {269--334},
year = {2005},
volume = {60},
number = {2},
language = {en},
url = {http://geodesic.mathdoc.fr/item/RM_2005_60_2_a1/}
}
V. I. Danilov; G. A. Koshevoy. Arrays and the combinatorics of Young tableaux. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 60 (2005) no. 2, pp. 269-334. http://geodesic.mathdoc.fr/item/RM_2005_60_2_a1/
[1] M. Aigner, Kombinatornaya teoriya, Mir, M., 1982 | MR
[2] S. Ariki, “Robinson–Schensted correspondence and left cells”, Adv. Stud. Pure Math., 28 (2000), 1–20 ; arXiv: math.QA/9910117 | MR | Zbl
[3] E. A. Bender, D. E. Knuth, “Enumeration of plane partitions”, J. Combin. Theory Ser. A, 13 (1972), 40–54 | DOI | MR | Zbl
[4] G. Benkart, F. Sottile, J. Stroomer, “Tableau switching: algorithms and applications”, J. Combin. Theory Ser. A, 76:1 (1996), 11–43 | DOI | MR | Zbl
[5] A. D. Berenstein, A. V. Zelevinsky, “Triple multiplicities for $\operatorname{sl}(r+1)$ and the spectrum of the exterior algebra of the adjoint representation”, J. Algebraic Combin., 1:1 (1992), 7–22 | DOI | MR | Zbl
[6] A. Berenstein, A. Zelevinsky, “Tensor product multiplicities, canonical bases and totally positive varieties”, Invent. Math., 143:1 (2001), 77–128 | DOI | MR | Zbl
[7] T. Britz, S. Fomin, “Finite posets and Ferrers shapes”, Adv. Math., 158:1 (2001), 86–127 | DOI | MR | Zbl
[8] A. S. Buch (with an appendix by W. Fulton), “The saturation conjecture (after A. Knutson and T. Tao)”, Enseign. Math. (2), 46:1–2 (2000), 43–60 | MR | Zbl
[9] V. Danilov, A. Karzanov, G. Koshevoy, Discrete strip-concave functions, Gefand–Tsetlin patterns, and related polyhedra, arXiv: math.CO/0404298 | MR
[10] V. I. Danilov, G. A. Koshevoi, “Nilpotentnye operatory i diskretno vognutye funktsii”, Izv. RAN. Ser. matem., 67:1 (2003), 3–20 | MR | Zbl
[11] V. I. Danilov, G. A. Koshevoi, “Diskretnaya vypuklost i ermitovy matritsy”, Tr. MIAN, 241, 2003, 68–89 | MR | Zbl
[12] V. Danilov, G. Koshevoy, Bicrystals and crystal $GL(V),GL(W)$-duality, Preprint RIMS-1485, Kyoto University, Kyoto, 2004 | MR
[13] V. Danilov, G. Koshevoy, “Discrete convexity and unimodularity. I”, Adv. Math., 189:2 (2004), 301–324 | DOI | MR | Zbl
[14] V. Danilov, G. Koshevoy, A simple proof of associativity and commutativity of LR-coefficients (or the hive ring), arXiv: math.CO/0409447 | MR
[15] M. Date, M. Jimbo, T. Miwa, “Representations of $U_q(\frak{gl}(n,C))$ at $q=0$ and the Robinson–Schensted correspondence”, Physics and Mathematics of Strings, eds. L. Brink, D. Friedman, A. M. Polyakov, Word Scientific, Teaneck, NJ, 1990, 185–211 | MR
[16] J. A. De Loera, T. B. McAllister, “Vertices of Gelfand–Tsetlin polytopes”, Discrete Comput. Geom., 32:4 (2004), 459–470 ; arXiv: math.CO/0309329 | DOI | MR | Zbl
[17] P. Deift, “Integrable systems and combitatorial theory”, Notices Amer. Math. Soc., 47:6 (2000), 631–640 | MR | Zbl
[18] S. V. Fomin, “Konechnye chastichno uporyadochennye mnozhestva i diagrammy Yunga”, Dokl. AN SSSR, 243:5 (1978), 1144–1147 | MR | Zbl
[19] S. Fomin, “Knuth equivalence, Jeu de taquin, and the Littlewood–Richardson rule. Appendix 1”, R. P. Stanley. Enumerative Combinatorics, vol. 2, Cambridge Univ. Press, Cambridge, 1999
[20] S. Fomin, A. Zelevinsky, “The Laurent phenomenon”, Adv. in Appl. Math., 28:2 (2002), 119–144 | DOI | MR | Zbl
[21] W. Fulton, Young Tableaux, London Math. Soc. Stud. Texts, 35, Cambridge Univ. Press, Cambridge, 1997 | MR | Zbl
[22] W. Fulton, “Eigenvalues, invariant factors, highest weights, and Schubert calculus”, Bull. Amer. Math. Soc. (N.S.), 37:3 (2000), 209–249 | DOI | MR | Zbl
[23] W. Fulton, J. Harris, Representation Theory. A first course, Springer-Verlag, New York, 1991 | MR
[24] O. Gleizer, A. Postnikov, “Littlewood–Richardson coefficients via Yang–Baxter equation”, Internat. Math. Res. Notices, 14 (2000), 741–774 ; arXiv: math.QA/9909124 | DOI | MR | Zbl
[25] C. Greene, “An extension of Schensted's theorem”, Adv. Math., 14 (1974), 254–265 | DOI | MR | Zbl
[26] F. Griffits, Dzh. Kharris, Printsipy algebraicheskoi geometrii, t. 1, 2, Mir, M., 1982 | MR
[27] M. Haiman, “Dual equivalence with applications, including a conjecture of Proctor”, Discrete Math., 99:1–3 (1992), 79–113 | DOI | MR | Zbl
[28] A. Henriques, J. Kamnitzer, The octahedron recurrence and $gl(n)$ cristals, arXiv: math.CO/0408114 | MR
[29] G. Dzheims, Teoriya predstavlenii simmetricheskikh grupp, Mir, M., 1982 | MR
[30] M. Kashiwara, “On crystal bases”, CMS Conf. Proc., 16 (1995), 155–197 | MR | Zbl
[31] M. Kashiwara, Bases Cristallines des Groupes Quantiques, Cours Spéc., 9, Société Math. France, Paris, 2002 | MR | Zbl
[32] A. N. Kirillov, “Introduction to tropical combinatorics”, Physics and Combinatorics, Proceedings of the Nagoya 2000 2nd International Workshop, eds. A. N. Kirillov, N. Liskova, World Scientific, Singapore, 2001, 82–150 | MR | Zbl
[33] A. N. Kirillov, A. D. Berenstein, “Groups generated by involutions, Gelfand–Tsetlin patterns, and combinatorics of Young tableaux”, Algebra i analiz, 7:1 (1995), 92–152 | MR | Zbl
[34] D. E. Knuth, “Permutations, matrices, and generalized Young tableaux”, Pacific J. Math., 34 (1970), 709–727 | MR | Zbl
[35] A. Knutson, T. Tao, “The honeycomb model of $\operatorname{GL}_n(\mathbb C)$ tensor products. I: Proof of the saturation conjecture”, J. Amer. Math. Soc., 12:4 (1999), 1055–1090 | DOI | MR | Zbl
[36] A. Knutson, T. Tao, C. Woodward, “A positive proof of the Littlewood–Richardson rule using the octahedron recurrence”, Electron. J. Combin., 11, Research Paper 61 (2004) ; arXiv: math.CO/0306274 | MR | Zbl
[37] A. Lascoux, “Double crystal graphs”, Studies in Memory of Issai Schur, Progr. Math., 210, eds. A. Joseph et al., Birkhäuser, Boston, 2003, 95–114 | MR | Zbl
[38] A. Lascoux, B. Leclerc, J.-Y. Thibon, “The plactic monoid”, Algebraic Combinatorics on Words, Encyclopedia Math. Appl., 90, Cambridge Univ. Press, Cambridge, 2002, 164–196 | MR
[39] A. Lascoux, M. P. Schützenberger, “Le monoïde plaxique”, Non-commutative Structures in Algebra and Geometric Combinatorics (Naples, 1978), Quad. Ric. Sci., 109, CNR, Rome, 1981, 129–156 | MR
[40] I. Makdonald, Simmetricheskie funktsii i mnogochleny Kholla, Mir, M., 1985 | MR
[41] Yu. I. Manin, Dokazuemoe i nedokazuemoe, Sov. radio, M., 1979
[42] A. Marshall, I. Olkin, Neravenstva: teoriya mazhorizatsii i ee prilozheniya, Mir, M., 1983 | MR | Zbl
[43] A. Yu. Okunkov, A. M. Vershik, “Novyi podkhod k teorii predstavlenii simmetricheskikh grupp. 2”, Zapiski nauchn. seminarov POMI, 307 (2004), 57–98 | MR
[44] I. Pak, E. Vallejo, Reductions of Young tableau bijections, arXiv: math.CO/0408171
[45] B. E. Sagan, The Symmetric Group, Wadsworth Brooks/Cole, Pacific Grove, CA, 1991 | MR | Zbl
[46] C. Schensted, “Longest increasing and descreasing subsequences”, Canad. J. Math., 13 (1961), 179–191 | MR | Zbl
[47] M. P. Schützenberger, “Promotion des morphismes d'ensembles ordonnés”, Discrete Math., 2 (1972), 73–94 | DOI | MR | Zbl
[48] R. P. Stanley, Enumerative Combinatorics, vol. 2, Cambridge Univ. Press, Cambridge, 1999, with a foreword by G.-C. Rota and Appendix 1 by S. Fomin | MR | Zbl
[49] R. Steinberg, “An occurrence of the Robinson–Schensted correspondence”, J. Algebra, 113:2 (1988), 523–528 | DOI | MR | Zbl
[50] J. R. Stembridge, “Rational tableaux and the tensor algebra of $\operatorname{gl}_n$”, J. Combin. Theory Ser. A, 46:1 (1987), 79–120 | DOI | MR | Zbl
[51] M. A. A. van Leeuwen, “The Littlewood–Richardson rule, and related combinatorics”, MSJ Mem., 11 (2001), 95–145 ; arXiv: math.CO/9908099 | MR | Zbl
[52] M. A. A. van Leeuwen, “The Robinson–Schensted and Schützenberger algorithms, an elementary approach”, Electronic J. Combin., 3:2, Research Paper 15 (1996) | MR
[53] A. V. Zelevinskii, “Obobschennye koeffitsienty Littlvuda–Richardsona, kanonicheskie bazisy i polnaya polozhitelnost”, Globus. Obschematematicheskii seminar, vyp. 1, ed. V. V. Prasolov, M. A. Tsfasman, MTsNMO, M., 2004, 147–160