@article{RM_2005_60_1_a1,
author = {V. A. Iskovskikh and V. V. Shokurov},
title = {Birational models and flips},
journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
pages = {27--94},
year = {2005},
volume = {60},
number = {1},
language = {en},
url = {http://geodesic.mathdoc.fr/item/RM_2005_60_1_a1/}
}
V. A. Iskovskikh; V. V. Shokurov. Birational models and flips. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 60 (2005) no. 1, pp. 27-94. http://geodesic.mathdoc.fr/item/RM_2005_60_1_a1/
[1] F. Ambro, “Quasi-log varieties”, Tr. MIAN, 240, 2003, 220–239 | MR | Zbl
[2] V. V. Batyrev, “The cone of effective divisors on threefolds”, Contemp. Math., 131. Part 3 (1992), 337–352 | MR | Zbl
[3] A. A. Borisov, V. V. Shokurov, “Napravlennye ratsionalnye priblizheniya s nekotorymi prilozheniyami v algebraicheskoi geometrii”, Tr. MIAN, 240, 2003, 73–81 | MR | Zbl
[4] I. A. Cheltsov, “O gladkoi chetyrekhmernoi kvintike”, Matem. sb., 191:9 (2000), 139–162 | MR
[5] A. Corti, Semistable 3-fold flips, arXiv:alg-geom/9505035 | MR
[6] A. Corti, “Factoring birational maps of threefolds after Sarkisov”, J. Algebraic Geom., 4:2 (1995), 223–254 | MR | Zbl
[7] A. Corti, 3-fold flips after Shokurov, Preprint, Univ. of Chicago, Chicago, 2003 | MR
[8] V. A. Iskovskikh, “Biratsionalnaya zhestkost giperpoverkhnostei Fano v ramkakh teorii Mori”, UMN, 56:2 (2001), 3–86 | MR | Zbl
[9] V. A. Iskovskikh, “b-Divizory i funktsionalnye algebry po Shokurovu”, Tr. MIAN, 240, 2003, 8–20 | MR | Zbl
[10] V. A. Iskovskikh, “O rabote Shokurova “Prelimiting flips””, Tr. MIAN, 240, 2003, 21–42 | MR | Zbl
[11] Y. Kawamata, “Crepant blowing-up of 3-dimensional canonical singularities and its application to degenerations of surfaces”, Ann. of Math. (2), 127:1 (1988), 93–163 | DOI | MR | Zbl
[12] Y. Kawamata, “Termination of log flips for algebraic 3-folds”, Internat. J. Math., 3:5 (1992), 653–659 | DOI | MR | Zbl
[13] Y. Kawamata, “Abundance theorem for minimal threefolds”, Invent. Math., 108:2 (1992), 229–246 | DOI | MR | Zbl
[14] Y. Kawamata, “Moderate degenerations of algebraic surfaces”, Complex Algebraic Varieties (Bayreuth, 1990), Lecture Notes in Math., 1507, eds. K. Hulek et al, Springer-Verlag, Berlin, 1992, 113–132 | MR
[15] Y. Kawamata, “Semistable minimal models of threefolds in positive or mixed characteristic”, J. Algebraic Geom., 3:3 (1994), 463–491 | MR | Zbl
[16] Y. Kawamata, “On the cone of divisors of Calabi–Yao fiber spaces”, Internat. J. Math., 8:5 (1997), 665–687 | DOI | MR | Zbl
[17] Y. Kawamata, K. Matsuda, K. Matsuki, “Introduction to the minimal model problem”, Algebraic Geometry (Sendai, 1985), Adv. Stud. Pure Math., 10, ed. T. Oda, North-Holland, Amsterdam, 1987, 283–360 | MR
[18] Y. Kawamata, K. Matsuki, “The number of the minimal models for a 3-fold of general type is finite”, Math. Ann., 276:4 (1987), 595–598 | DOI | MR | Zbl
[19] S. Keel, K. Matsuki, J. McKernan, “Log abundance theorem for threefolds”, Duke Math. J., 75:1 (1994), 99–119 ; corrections: ibid. 122:3 (2004), 625–630 | DOI | MR | Zbl | DOI | MR | Zbl
[20] J. Kollár, “Flops”, Nagoya Math. J., 113 (1989), 15–36 | MR | Zbl
[21] J. Kollár (ed.), Flips and Abundance for Algebraic Threefolds, A Summer Seminar at the University of Utah (Salt Lake City, 1991), Astérisque, 211, Soc. Math. France, Paris, 1992 | MR
[22] J. Kollár, S. Mori, with the collaboration of C. H. Clemens, A. Corti, Birational Geometry of Algebraic Varieties, Cambridge Tracts in Math., 134, Cambridge Univ. Press, Cambridge, 1998 | MR | Zbl
[23] J. Kollár, N. I. Shepherd-Barron, “Threefolds and deformations of surface singularities”, Invent. Math., 91:2 (1988), 299–338 | DOI | MR | Zbl
[24] V. S. Kulikov, “Vyrozhdeniya K3 poverkhnostei i poverkhnostei Enrikvesa”, Izv. AN SSSR. Ser. matem., 41:5 (1977), 1008–1042 | MR | Zbl
[25] K. Matsuki, Introduction to the Mori Program, Springer-Verlag, New York, 2002 | MR | Zbl
[26] S. Mori, “Flip theorem and the existence of minimal models for 3-folds”, J. Amer. Math. Soc., 1:1 (1988), 117–253 | DOI | MR | Zbl
[27] N. Nakayama, “The lower semicontinuity of the plurigenera of complex varieties”, Internat. J. Math., 8:5 (1997), 551–590 | MR
[28] U. Persson, On degenerations of algebraic surfaces, Mem. Amer. Math. Soc., 189, 1977 | MR | Zbl
[29] Yu. G. Prokhorov, “O polustabilnykh styagivaniyakh Mori”, Izv. RAN. Ser. matem., 68:2 (2004), 147–158 | MR
[30] M. Reid, “Canonical 3-folds”, Journeés de Géométrie Algébrique d'Angers (Angers, 1979), ed. A. Beauville, Sijthoff and Noordhoff, Alphen, 1980, 273–310 | MR
[31] M. Reid, “Minimal models of canonical 3-folds”, Algebraic Varieties and Analytic Varieties (Tokyo, 1981), Adv. Stud. Pure Math., 1, North-Holland, Amsterdam, 1983, 131–180 | MR
[32] M. Reid, “Young person's guide to canonical singularities”, Proc. Sympos. Pure Math., 46:1 (1987), 345–414 | MR | Zbl
[33] V. V. Shokurov, “Teorema o neobraschenii v nul”, Izv. AN SSSR. Ser. matem., 49:3 (1985), 635–651 | MR
[34] V. V. Shokurov, “Trekhmernye logperestroiki”, Izv. AN SSSR. Ser. matem., 56:1 (1992), 105–203 | MR | Zbl
[35] V. V. Shokurov, “Semistable 3-fold flips”, Izv. AN SSSR. Ser. matem., 57:2 (1993), 165–222 | MR | Zbl
[36] V. V. Shokurov, “3-fold log models”, J. Math. Sci., 81:3 (1996), 2667–2699 | DOI | MR | Zbl
[37] V. V. Shokurov, “Prelimiting flips”, Tr. MIAN, 240, 2003, 82–219 | MR | Zbl
[38] V. V. Shokurov, “Letters of a bi-rationalist. IV. Geometry of log flips”, Algebraic Geometry, eds. M. C. Beltrametti et al., de Gruyter, Berlin, 2002, 313–328 | MR | Zbl
[39] V. V. Shokurov, “Pisma o biratsionalnom. V: M.l.d. i obryv logflipov”, Tr. MIAN, 246, 2004, 328–351 | MR | Zbl
[40] H. Takagi, 3-fold log flips according to V. V. Shokurov, Preprint, 1999
[41] S. Tsunoda, “Degenerations of surfaces”, Internat. J. Math., 8:5 (1997), 755–764 | MR