Topology of quasi-periodic functions on the plane
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 60 (2005) no. 1, pp. 1-26 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In this paper the topological theory of quasi-periodic functions on the plane is presented. The development of this theory was started (in another terminology) by the Moscow topology group in the early 1980s, motivated by needs of solid state physics which led to the necessity of investigating a special (non-generic) case of Hamiltonian foliations on Fermi surfaces with a multivalued Hamiltonian function [1]. These foliations turned out to have unexpected topological properties, discovered in the 1980s ([2], [3]) and 1990s ([4]–[6]), which led finally to non-trivial physical conclusions ([7], [8]) by considering the so-called geometric strong magnetic field limit [9]. A reformulation of the problem in terms of quasi-periodic functions and an extension to higher dimensions in 1999 [10] produced a new and fruitful approach. One can say that for monocrystalline normal metals in a magnetic field the semiclassical trajectories of electrons in the quasi-momentum space are exactly the level curves of a quasi-periodic function with three quasi-periods which is the restriction of the dispersion relation to the plane orthogonal to the magnetic field. The general study of topological properties of level curves for quasi-periodic functions on the plane with arbitrarily many quasi-periods began in 1999 when some new ideas were formulated in the case of four quasi-periods [10]. The last section of this paper contains a complete proof of these results based on the technique developed in [11] and [12]. Some new physical applications of the general problem were found recently [13].
@article{RM_2005_60_1_a0,
     author = {I. A. Dynnikov and S. P. Novikov},
     title = {Topology of quasi-periodic functions on the plane},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {1--26},
     year = {2005},
     volume = {60},
     number = {1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/RM_2005_60_1_a0/}
}
TY  - JOUR
AU  - I. A. Dynnikov
AU  - S. P. Novikov
TI  - Topology of quasi-periodic functions on the plane
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2005
SP  - 1
EP  - 26
VL  - 60
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/RM_2005_60_1_a0/
LA  - en
ID  - RM_2005_60_1_a0
ER  - 
%0 Journal Article
%A I. A. Dynnikov
%A S. P. Novikov
%T Topology of quasi-periodic functions on the plane
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2005
%P 1-26
%V 60
%N 1
%U http://geodesic.mathdoc.fr/item/RM_2005_60_1_a0/
%G en
%F RM_2005_60_1_a0
I. A. Dynnikov; S. P. Novikov. Topology of quasi-periodic functions on the plane. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 60 (2005) no. 1, pp. 1-26. http://geodesic.mathdoc.fr/item/RM_2005_60_1_a0/

[1] S. P. Novikov, “Gamiltonov formalizm i mnogoznachnyi analog teorii Morsa”, UMN, 37:5 (1982), 3–49 ; http://www.mi.ras.ru/~snovikov/74.zip | MR | Zbl

[2] A. V. Zorich, “Zadacha S. P. Novikova o poluklassicheskom dvizhenii elektrona v odnorodnom magnitnom pole, blizkom k ratsionalnomu”, UMN, 39:5 (1984), 235–236 | MR | Zbl

[3] S. P. Novikov, “Quasiperiodic structures in topology”, Topological Methods in Modern Mathematics (Stony Brook, NY, 1991), Publish or Perish, Houston, TX, 1993, 223–233 | MR | Zbl

[4] I. A. Dynnikov, “Dokazatelstvo gipotezy S. P. Novikova dlya sluchaya malykh vozmuschenii ratsionalnykh magnitnykh polei”, UMN, 47:3 (1992), 161–162 | MR | Zbl

[5] I. A. Dynnikov, “Zadacha S. P. Novikova o poluklassicheskom dvizhenii elektrona”, UMN, 48:2 (1993), 179–180 | MR | Zbl

[6] I. A. Dynnikov, “Dokazatelstvo gipotezy S. P. Novikova o poluklassicheskom dvizhenii elektrona”, Matem. zametki, 53:5 (1993), 57–68 | MR | Zbl

[7] S. P. Novikov, A. Ya. Maltsev, “Topologicheskie kvantovye kharakteristiki, nablyudaemye pri izuchenii provodimosti v normalnykh metallakh”, Pisma v ZhETF, 63:10 (1996), 809–813

[8] S. P. Novikov, A. Ya. Maltsev, “Topologicheskie yavleniya v normalnykh metallakh”, UFN, 168:3 (1998), 249–258 ; arXiv:cond-mat/9709007 | DOI

[9] I. M. Lifshits, M. Ya. Azbel, M. I. Kaganov, Elektronnaya teoriya metallov, Nauka, M., 1971 | Zbl

[10] S. P. Novikov, “Urovni kvaziperiodicheskikh funktsii na ploskosti i gamiltonovy sistemy”, UMN, 54:5 (1999), 147–148 ; arXiv:math-ph/9909032 | MR

[11] I. A. Dynnikov, “Semiclassical motion of the electron. A proof of the Novikov conjecture in general position and counterexamples”, Solitons, Geometry, and Topology: On the Crossroad, Amer. Math. Soc. Transl. Ser. 2, 179, Amer. Math. Soc., Providence, RI, 1997, 45–73 | MR | Zbl

[12] I. A. Dynnikov, “Geometriya zon ustoichivosti v zadache S. P. Novikova o poluklassicheskom dvizhenii elektrona”, UMN, 54:1 (1999), 21–60 | MR | Zbl

[13] A. Ya. Maltsev, “Quasiperiodic functions theory and the superlattice potentials for a two-dimensional electron gas”, J. Math. Phys., 45:3 (2004), 1128–1149 ; arXiv:cond-mat/0302014 | DOI | MR | Zbl

[14] T. K. T. Le, S. A. Piunikhin, V. A. Sadov, “Geometriya kvazikristallov”, UMN, 48:1 (1993), 41–102 | MR | Zbl

[15] V. I. Arnold, A. B. Givental, “Symplectic geometry”, Dynamical Systems. V. IV: Symplectic Geometry and Its Applications, Encyclopedia Math. Sci., 4, eds. V. I. Arnold, S. P. Novikov, Springer-Verlag, Berlin, 2001, 1–38 | MR

[16] B. A. Dubrovin, I. M. Krichever, S. P. Novikov, “Integrable systems. I”, Dynamical Systems. V. IV: Symplectic Geometry and Its Applications, Encyclopedia Math. Sci., 4, eds. V. I. Arnold, S. P. Novikov, Springer-Verlag, Berlin, 2001, 177–332 | MR

[17] A. A. Abrikosov, Osnovy teorii metallov, Nauka, M., 1987

[18] C. Kittel, Quantum Theory of Solids, Wiley, New York, 1963

[19] J. M. Ziman, Principles of the theory of solids, Cambridge Univ. Press, London, 1972 | MR

[20] I. M. Lifshits, V. G. Peschanskii, “Galvanomagnitnye kharakteristiki metallov s otkrytymi poverkhnostyami Fermi. II”, ZhETF, 38 (1960), 188–193

[21] I. A. Dynnikov, A. Ya. Maltsev, “Topologicheskie kharakteristiki elektronnogo spektra v monokristallakh”, ZhETF, 112:1 (1997), 371–378 | MR

[22] A. Ya. Maltsev, S. P. Novikov, “Dynamical systems, topology, and conductivity in normal metals”, J. Statist. Phys., 115:1 (2004), 31–46 ; arXiv:cond-mat/0312708 | DOI | MR

[23] A. Ya. Maltsev, S. P. Novikov, “Quasiperiodic functions and dynamical systems in quantum solid state physics”, Bull. Braz. Math. Soc. (N.S.), 34:1 (2003), 171–210 ; arXiv:math-ph/0301033 | DOI | MR | Zbl

[24] A. Ya. Maltsev, S. P. Novikov, “Topology, quasiperiodic functions and the transport phenomena”, Topology in Condensed Matters, ed. M. I. Monastyrsky, Sprinter-Verlag, Berlin, 2005 ; arXiv:cond-mat/0312710 | MR

[25] C. W. J. Beenakker, “Guiding-center-drift resonance in a periodically modulated two-dimensional electron gas”, Phys. Rev. Lett., 62:17 (1989), 2020–2023 | DOI

[26] V. I. Arnold, “Topologicheskie i ergodicheskie svoistva zamknutykh 1-form s nesoizmerimymi periodami”, Funkts. analiz i ego pril., 25:2 (1991), 1–12 | MR | Zbl

[27] Ya. G. Sinai, K. M. Khanin, “Peremeshivanie nekotorykh klassov spetsialnykh potokov nad povorotom okruzhnosti”, Funkts. analiz i ego pril., 26:3 (1992), 1–21 | MR | Zbl

[28] A. Ya. Maltsev, “Anomalnoe povedenie tenzora elektroprovodnosti v silnykh magnitnykh polyakh”, ZhETF, 112:5 (11) (1997), 1710–1726

[29] R. De Leo, “Numerical analysis of the Novikov problem of a normal metal in a strong magnetic field”, SIAM J. Appl. Dyn. Syst., 2:4 (2003), 517–545 | DOI | MR | Zbl