@article{RM_2005_60_1_a0,
author = {I. A. Dynnikov and S. P. Novikov},
title = {Topology of quasi-periodic functions on the plane},
journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
pages = {1--26},
year = {2005},
volume = {60},
number = {1},
language = {en},
url = {http://geodesic.mathdoc.fr/item/RM_2005_60_1_a0/}
}
I. A. Dynnikov; S. P. Novikov. Topology of quasi-periodic functions on the plane. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 60 (2005) no. 1, pp. 1-26. http://geodesic.mathdoc.fr/item/RM_2005_60_1_a0/
[1] S. P. Novikov, “Gamiltonov formalizm i mnogoznachnyi analog teorii Morsa”, UMN, 37:5 (1982), 3–49 ; http://www.mi.ras.ru/~snovikov/74.zip | MR | Zbl
[2] A. V. Zorich, “Zadacha S. P. Novikova o poluklassicheskom dvizhenii elektrona v odnorodnom magnitnom pole, blizkom k ratsionalnomu”, UMN, 39:5 (1984), 235–236 | MR | Zbl
[3] S. P. Novikov, “Quasiperiodic structures in topology”, Topological Methods in Modern Mathematics (Stony Brook, NY, 1991), Publish or Perish, Houston, TX, 1993, 223–233 | MR | Zbl
[4] I. A. Dynnikov, “Dokazatelstvo gipotezy S. P. Novikova dlya sluchaya malykh vozmuschenii ratsionalnykh magnitnykh polei”, UMN, 47:3 (1992), 161–162 | MR | Zbl
[5] I. A. Dynnikov, “Zadacha S. P. Novikova o poluklassicheskom dvizhenii elektrona”, UMN, 48:2 (1993), 179–180 | MR | Zbl
[6] I. A. Dynnikov, “Dokazatelstvo gipotezy S. P. Novikova o poluklassicheskom dvizhenii elektrona”, Matem. zametki, 53:5 (1993), 57–68 | MR | Zbl
[7] S. P. Novikov, A. Ya. Maltsev, “Topologicheskie kvantovye kharakteristiki, nablyudaemye pri izuchenii provodimosti v normalnykh metallakh”, Pisma v ZhETF, 63:10 (1996), 809–813
[8] S. P. Novikov, A. Ya. Maltsev, “Topologicheskie yavleniya v normalnykh metallakh”, UFN, 168:3 (1998), 249–258 ; arXiv:cond-mat/9709007 | DOI
[9] I. M. Lifshits, M. Ya. Azbel, M. I. Kaganov, Elektronnaya teoriya metallov, Nauka, M., 1971 | Zbl
[10] S. P. Novikov, “Urovni kvaziperiodicheskikh funktsii na ploskosti i gamiltonovy sistemy”, UMN, 54:5 (1999), 147–148 ; arXiv:math-ph/9909032 | MR
[11] I. A. Dynnikov, “Semiclassical motion of the electron. A proof of the Novikov conjecture in general position and counterexamples”, Solitons, Geometry, and Topology: On the Crossroad, Amer. Math. Soc. Transl. Ser. 2, 179, Amer. Math. Soc., Providence, RI, 1997, 45–73 | MR | Zbl
[12] I. A. Dynnikov, “Geometriya zon ustoichivosti v zadache S. P. Novikova o poluklassicheskom dvizhenii elektrona”, UMN, 54:1 (1999), 21–60 | MR | Zbl
[13] A. Ya. Maltsev, “Quasiperiodic functions theory and the superlattice potentials for a two-dimensional electron gas”, J. Math. Phys., 45:3 (2004), 1128–1149 ; arXiv:cond-mat/0302014 | DOI | MR | Zbl
[14] T. K. T. Le, S. A. Piunikhin, V. A. Sadov, “Geometriya kvazikristallov”, UMN, 48:1 (1993), 41–102 | MR | Zbl
[15] V. I. Arnold, A. B. Givental, “Symplectic geometry”, Dynamical Systems. V. IV: Symplectic Geometry and Its Applications, Encyclopedia Math. Sci., 4, eds. V. I. Arnold, S. P. Novikov, Springer-Verlag, Berlin, 2001, 1–38 | MR
[16] B. A. Dubrovin, I. M. Krichever, S. P. Novikov, “Integrable systems. I”, Dynamical Systems. V. IV: Symplectic Geometry and Its Applications, Encyclopedia Math. Sci., 4, eds. V. I. Arnold, S. P. Novikov, Springer-Verlag, Berlin, 2001, 177–332 | MR
[17] A. A. Abrikosov, Osnovy teorii metallov, Nauka, M., 1987
[18] C. Kittel, Quantum Theory of Solids, Wiley, New York, 1963
[19] J. M. Ziman, Principles of the theory of solids, Cambridge Univ. Press, London, 1972 | MR
[20] I. M. Lifshits, V. G. Peschanskii, “Galvanomagnitnye kharakteristiki metallov s otkrytymi poverkhnostyami Fermi. II”, ZhETF, 38 (1960), 188–193
[21] I. A. Dynnikov, A. Ya. Maltsev, “Topologicheskie kharakteristiki elektronnogo spektra v monokristallakh”, ZhETF, 112:1 (1997), 371–378 | MR
[22] A. Ya. Maltsev, S. P. Novikov, “Dynamical systems, topology, and conductivity in normal metals”, J. Statist. Phys., 115:1 (2004), 31–46 ; arXiv:cond-mat/0312708 | DOI | MR
[23] A. Ya. Maltsev, S. P. Novikov, “Quasiperiodic functions and dynamical systems in quantum solid state physics”, Bull. Braz. Math. Soc. (N.S.), 34:1 (2003), 171–210 ; arXiv:math-ph/0301033 | DOI | MR | Zbl
[24] A. Ya. Maltsev, S. P. Novikov, “Topology, quasiperiodic functions and the transport phenomena”, Topology in Condensed Matters, ed. M. I. Monastyrsky, Sprinter-Verlag, Berlin, 2005 ; arXiv:cond-mat/0312710 | MR
[25] C. W. J. Beenakker, “Guiding-center-drift resonance in a periodically modulated two-dimensional electron gas”, Phys. Rev. Lett., 62:17 (1989), 2020–2023 | DOI
[26] V. I. Arnold, “Topologicheskie i ergodicheskie svoistva zamknutykh 1-form s nesoizmerimymi periodami”, Funkts. analiz i ego pril., 25:2 (1991), 1–12 | MR | Zbl
[27] Ya. G. Sinai, K. M. Khanin, “Peremeshivanie nekotorykh klassov spetsialnykh potokov nad povorotom okruzhnosti”, Funkts. analiz i ego pril., 26:3 (1992), 1–21 | MR | Zbl
[28] A. Ya. Maltsev, “Anomalnoe povedenie tenzora elektroprovodnosti v silnykh magnitnykh polyakh”, ZhETF, 112:5 (11) (1997), 1710–1726
[29] R. De Leo, “Numerical analysis of the Novikov problem of a normal metal in a strong magnetic field”, SIAM J. Appl. Dyn. Syst., 2:4 (2003), 517–545 | DOI | MR | Zbl