Fourier–Laplace transform of irreducible regular differential systems on the Riemann sphere
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 59 (2004) no. 6, pp. 1165-1180 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

It is shown that the Fourier–Laplace transform of an irreducible regular differential system on the Riemann sphere underlies a polarizable regular twistor $\mathscr D$-module if one considers only the part at finite distance. The associated holomorphic bundle defined away from the origin of the complex plane is therefore equipped with a natural harmonic metric having a tame behaviour near the origin.
@article{RM_2004_59_6_a8,
     author = {C. Sabbah},
     title = {Fourier{\textendash}Laplace transform of irreducible regular differential systems on the {Riemann} sphere},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {1165--1180},
     year = {2004},
     volume = {59},
     number = {6},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/RM_2004_59_6_a8/}
}
TY  - JOUR
AU  - C. Sabbah
TI  - Fourier–Laplace transform of irreducible regular differential systems on the Riemann sphere
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2004
SP  - 1165
EP  - 1180
VL  - 59
IS  - 6
UR  - http://geodesic.mathdoc.fr/item/RM_2004_59_6_a8/
LA  - en
ID  - RM_2004_59_6_a8
ER  - 
%0 Journal Article
%A C. Sabbah
%T Fourier–Laplace transform of irreducible regular differential systems on the Riemann sphere
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2004
%P 1165-1180
%V 59
%N 6
%U http://geodesic.mathdoc.fr/item/RM_2004_59_6_a8/
%G en
%F RM_2004_59_6_a8
C. Sabbah. Fourier–Laplace transform of irreducible regular differential systems on the Riemann sphere. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 59 (2004) no. 6, pp. 1165-1180. http://geodesic.mathdoc.fr/item/RM_2004_59_6_a8/

[1] O. Biquard, “Fibrés de {H}iggs et connexions intégrables: le cas logarithmique (diviseur lisse)”, Ann. Sci. École Norm. Sup. (4), 30:1 (1997), 41–96 | MR | Zbl

[2] A. A. Bolibrukh, “Problema Rimana–Gilberta”, UMN, 45:2 (1990), 3–47 | MR | Zbl

[3] A. A. Bolibrukh, “O dostatochnykh usloviyakh polozhitelnoi razreshimosti problemy Rimana–Gilberta”, Matem. zametki, 51:2 (1992), 9–19 | MR | Zbl

[4] A. A. Bolibrukh, “Ob analiticheskom preobrazovanii k standartnoi birkgofovoi forme”, Dokl. RAN, 334:5 (1994), 553–555 | MR | Zbl

[5] A. Borel, F. Ehlers, P.-P. Grivel, A. Haefliger, B. Kaup, B. Malgrange, Algebraic $\mathscr D$-modules, Perspect. Math., 2, Academic Press, Boston, MA, 1987 | MR

[6] B. Malgrange, Équations différentielles à coefficients polynomiaux, Progr. Math., 96, Birkhäuser, Boston, MA, 1991 | MR | Zbl

[7] C. Sabbah, “Introduction to algebraic theory of linear systems of differential equations”, Éléments de la théorie des systèmes différentiels. I: $\mathscr D$-modules cohérents et holonomes, eds. Ph. Maisonobe, C. Sabbah, Hermann, Paris, 1993, 1–80 | MR | Zbl

[8] C. Sabbah, “Harmonic metrics and connections with irregular singularities”, Ann. Inst. Fourier (Grenoble), 49:4 (1999), 1265–1291 | MR | Zbl

[9] C. Sabbah, Déformations isomonodromiques et variétés de Frobenius, CNRS Éditions EDP Sciences, Paris, 2002 serial Savoirs Actuels (Les Ulis) | MR | Zbl

[10] C. Sabbah, Polarizable twistor $\mathscr D$-modules, http://math.polytechnique.fr/cmat/sabbah/articles.html

[11] C. Simpson, “Harmonic bundles on noncompact curves”, J. Amer. Math. Soc., 3:3 (1990), 713–770 | DOI | MR | Zbl

[12] C. Simpson, “Higgs bundles and local systems”, Inst. Hautes Études Sci. Publ. Math., 75 (1992), 5–95 | DOI | MR | Zbl

[13] C. Simpson, Mixed twistor structures, Prépublication, Université de Toulouse, Toulouse, 1997; arXiv: math.AG/9705006

[14] S. Szabo, Nahm transform of meromorphic integrable connections on the Riemann sphere, Manuscript, 2004

[15] S. Zucker, “Hodge theory with degenerating coefficients: $L_2$-cohomology in the Poincaré metric”, Ann. of Math. (2), 109:3 (1979), 415–476 | DOI | MR | Zbl