Analytic theory of difference equations with rational and elliptic coefficients and the Riemann--Hilbert problem
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 59 (2004) no. 6, pp. 1117-1154
Voir la notice de l'article provenant de la source Math-Net.Ru
A new approach to the construction of the analytic theory of difference equations with rational and elliptic coefficients is proposed, based on the construction of canonical meromorphic
solutions which are analytic along “thick” paths. The concept of these solutions leads to the definition of local monodromies of difference equations. It is shown that, in the continuous limit,
these local monodromies converge to monodromy matrices of differential equations. In the elliptic case a new type of isomonodromy transformations changing the periods of
elliptic curves is constructed.
@article{RM_2004_59_6_a6,
author = {I. M. Krichever},
title = {Analytic theory of difference equations with rational and elliptic coefficients and the {Riemann--Hilbert} problem},
journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
pages = {1117--1154},
publisher = {mathdoc},
volume = {59},
number = {6},
year = {2004},
language = {en},
url = {http://geodesic.mathdoc.fr/item/RM_2004_59_6_a6/}
}
TY - JOUR AU - I. M. Krichever TI - Analytic theory of difference equations with rational and elliptic coefficients and the Riemann--Hilbert problem JO - Trudy Matematicheskogo Instituta imeni V.A. Steklova PY - 2004 SP - 1117 EP - 1154 VL - 59 IS - 6 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/RM_2004_59_6_a6/ LA - en ID - RM_2004_59_6_a6 ER -
%0 Journal Article %A I. M. Krichever %T Analytic theory of difference equations with rational and elliptic coefficients and the Riemann--Hilbert problem %J Trudy Matematicheskogo Instituta imeni V.A. Steklova %D 2004 %P 1117-1154 %V 59 %N 6 %I mathdoc %U http://geodesic.mathdoc.fr/item/RM_2004_59_6_a6/ %G en %F RM_2004_59_6_a6
I. M. Krichever. Analytic theory of difference equations with rational and elliptic coefficients and the Riemann--Hilbert problem. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 59 (2004) no. 6, pp. 1117-1154. http://geodesic.mathdoc.fr/item/RM_2004_59_6_a6/