Analytic theory of difference equations with rational and elliptic coefficients and the Riemann–Hilbert problem
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 59 (2004) no. 6, pp. 1117-1154 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A new approach to the construction of the analytic theory of difference equations with rational and elliptic coefficients is proposed, based on the construction of canonical meromorphic solutions which are analytic along “thick” paths. The concept of these solutions leads to the definition of local monodromies of difference equations. It is shown that, in the continuous limit, these local monodromies converge to monodromy matrices of differential equations. In the elliptic case a new type of isomonodromy transformations changing the periods of elliptic curves is constructed.
@article{RM_2004_59_6_a6,
     author = {I. M. Krichever},
     title = {Analytic theory of difference equations with rational and elliptic coefficients and the {Riemann{\textendash}Hilbert} problem},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {1117--1154},
     year = {2004},
     volume = {59},
     number = {6},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/RM_2004_59_6_a6/}
}
TY  - JOUR
AU  - I. M. Krichever
TI  - Analytic theory of difference equations with rational and elliptic coefficients and the Riemann–Hilbert problem
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2004
SP  - 1117
EP  - 1154
VL  - 59
IS  - 6
UR  - http://geodesic.mathdoc.fr/item/RM_2004_59_6_a6/
LA  - en
ID  - RM_2004_59_6_a6
ER  - 
%0 Journal Article
%A I. M. Krichever
%T Analytic theory of difference equations with rational and elliptic coefficients and the Riemann–Hilbert problem
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2004
%P 1117-1154
%V 59
%N 6
%U http://geodesic.mathdoc.fr/item/RM_2004_59_6_a6/
%G en
%F RM_2004_59_6_a6
I. M. Krichever. Analytic theory of difference equations with rational and elliptic coefficients and the Riemann–Hilbert problem. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 59 (2004) no. 6, pp. 1117-1154. http://geodesic.mathdoc.fr/item/RM_2004_59_6_a6/

[1] C. A. Tracy, H. Widom, “Fredholm determinants, differential equations and matrix models”, Comm. Math. Phys., 163:1 (1994), 33–72 | DOI | MR | Zbl

[2] M. Jimbo, T. Miwa, Ya. Môri, M. Sato, “Density matrix of an impenetrable Bose gas and the fifth Painlevé transcendent”, Phys. D., 1:1 (1980), 80–158 | DOI | MR

[3] M. L. Mehta, “A non-linear differential equation and a Fredholm determinant”, J. Physique I, 2:9 (1992), 1721–1729 | DOI | MR

[4] J. Harnad, A. R. Its, “Integrable Fredholm operators and dual isomonodromic deformations”, Comm. Math. Phys., 226:3 (2002), 497–530 | DOI | MR | Zbl

[5] A. Borodin, P. Deift, “Fredholm determinants, Jimbo–Miwa–Ueno $\tau$-functions, and representation theory”, Comm. Pure Appl. Math., 55:9 (2002), 1160–1230 | DOI | MR | Zbl

[6] M. Jimbo, H. Sakai, “A $q$-analog of the sixth Painlevé equation”, Lett. Math. Phys., 38:2 (1996), 145–154 | DOI | MR | Zbl

[7] H. Sakai, “Rational surfaces associated with affine root systems and geometry of the Painlevé equations”, Comm. Math. Phys., 220:1 (2001), 165–229 | DOI | MR | Zbl

[8] A. Borodin, “Discrete gap probabilities and discrete Painlevé equations”, Duke Math. J., 117:3 (2003), 489–542 | DOI | MR | Zbl

[9] A. Borodin, D. Boyarchenko, “Distribution of the first particle in discrete orthogonal polynomial ensembles”, Comm. Math. Phys., 234:2 (2003), 287–338 | DOI | MR | Zbl

[10] A. Borodin, Isomonodromy transformations of linear systems of difference equations, math.CA/0209144

[11] G. D. Birkhoff, “General theory of linear difference equations”, Trans. Amer. Math. Soc., 12:2 (1911), 243–284 | DOI | MR | Zbl

[12] G. D. Birkhoff, “The generalized Riemann problem for linear differential equations and allied problems for linear difference and $q$-difference equations”, Proc. Amer. Acad. of Arts and Sci., 49:9 (1913), 521–568 | Zbl

[13] M. van der Put, M. F. Singer, Galois Theory of Difference Equations, Lecture Notes in Math., 1666, Springer-Verlag, Berlin, 1997 | MR

[14] L. Schlesinger, “Über eine Klasse von Differentialsystemen beliebiger Ordung mit festen kritischen Punkten”, J. Math., 141 (1912), 96–145 | Zbl

[15] N. I. Muskhelishvili, Singulyarnye integralnye uravneniya: granichnye zadachi teorii funktsii i nekotorye ikh prilozheniya k matematicheskoi fizike, Gostekhizdat, M.–L., 1946

[16] G. Felder, A. Varchenko, “$q$-deformed KZB heat equations: completeness, modular properties and $\operatorname{SL}(3,\mathbb Z)$”, Adv. Math., 171:2 (2002), 228–275 | DOI | MR | Zbl

[17] J. Plemelj, Problems in the Sense of Riemann and Klein, Wiley, New York, 1964 | MR | Zbl

[18] M. Narasimhan, C. S. Seshadri, “Stable and unitary vector bundles on a compact Riemann surface”, Ann. of Math. (2), 82 (1965), 540–567 | DOI | MR | Zbl