@article{RM_2004_59_6_a6,
author = {I. M. Krichever},
title = {Analytic theory of difference equations with rational and elliptic coefficients and the {Riemann{\textendash}Hilbert} problem},
journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
pages = {1117--1154},
year = {2004},
volume = {59},
number = {6},
language = {en},
url = {http://geodesic.mathdoc.fr/item/RM_2004_59_6_a6/}
}
TY - JOUR AU - I. M. Krichever TI - Analytic theory of difference equations with rational and elliptic coefficients and the Riemann–Hilbert problem JO - Trudy Matematicheskogo Instituta imeni V.A. Steklova PY - 2004 SP - 1117 EP - 1154 VL - 59 IS - 6 UR - http://geodesic.mathdoc.fr/item/RM_2004_59_6_a6/ LA - en ID - RM_2004_59_6_a6 ER -
%0 Journal Article %A I. M. Krichever %T Analytic theory of difference equations with rational and elliptic coefficients and the Riemann–Hilbert problem %J Trudy Matematicheskogo Instituta imeni V.A. Steklova %D 2004 %P 1117-1154 %V 59 %N 6 %U http://geodesic.mathdoc.fr/item/RM_2004_59_6_a6/ %G en %F RM_2004_59_6_a6
I. M. Krichever. Analytic theory of difference equations with rational and elliptic coefficients and the Riemann–Hilbert problem. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 59 (2004) no. 6, pp. 1117-1154. http://geodesic.mathdoc.fr/item/RM_2004_59_6_a6/
[1] C. A. Tracy, H. Widom, “Fredholm determinants, differential equations and matrix models”, Comm. Math. Phys., 163:1 (1994), 33–72 | DOI | MR | Zbl
[2] M. Jimbo, T. Miwa, Ya. Môri, M. Sato, “Density matrix of an impenetrable Bose gas and the fifth Painlevé transcendent”, Phys. D., 1:1 (1980), 80–158 | DOI | MR
[3] M. L. Mehta, “A non-linear differential equation and a Fredholm determinant”, J. Physique I, 2:9 (1992), 1721–1729 | DOI | MR
[4] J. Harnad, A. R. Its, “Integrable Fredholm operators and dual isomonodromic deformations”, Comm. Math. Phys., 226:3 (2002), 497–530 | DOI | MR | Zbl
[5] A. Borodin, P. Deift, “Fredholm determinants, Jimbo–Miwa–Ueno $\tau$-functions, and representation theory”, Comm. Pure Appl. Math., 55:9 (2002), 1160–1230 | DOI | MR | Zbl
[6] M. Jimbo, H. Sakai, “A $q$-analog of the sixth Painlevé equation”, Lett. Math. Phys., 38:2 (1996), 145–154 | DOI | MR | Zbl
[7] H. Sakai, “Rational surfaces associated with affine root systems and geometry of the Painlevé equations”, Comm. Math. Phys., 220:1 (2001), 165–229 | DOI | MR | Zbl
[8] A. Borodin, “Discrete gap probabilities and discrete Painlevé equations”, Duke Math. J., 117:3 (2003), 489–542 | DOI | MR | Zbl
[9] A. Borodin, D. Boyarchenko, “Distribution of the first particle in discrete orthogonal polynomial ensembles”, Comm. Math. Phys., 234:2 (2003), 287–338 | DOI | MR | Zbl
[10] A. Borodin, Isomonodromy transformations of linear systems of difference equations, math.CA/0209144
[11] G. D. Birkhoff, “General theory of linear difference equations”, Trans. Amer. Math. Soc., 12:2 (1911), 243–284 | DOI | MR | Zbl
[12] G. D. Birkhoff, “The generalized Riemann problem for linear differential equations and allied problems for linear difference and $q$-difference equations”, Proc. Amer. Acad. of Arts and Sci., 49:9 (1913), 521–568 | Zbl
[13] M. van der Put, M. F. Singer, Galois Theory of Difference Equations, Lecture Notes in Math., 1666, Springer-Verlag, Berlin, 1997 | MR
[14] L. Schlesinger, “Über eine Klasse von Differentialsystemen beliebiger Ordung mit festen kritischen Punkten”, J. Math., 141 (1912), 96–145 | Zbl
[15] N. I. Muskhelishvili, Singulyarnye integralnye uravneniya: granichnye zadachi teorii funktsii i nekotorye ikh prilozheniya k matematicheskoi fizike, Gostekhizdat, M.–L., 1946
[16] G. Felder, A. Varchenko, “$q$-deformed KZB heat equations: completeness, modular properties and $\operatorname{SL}(3,\mathbb Z)$”, Adv. Math., 171:2 (2002), 228–275 | DOI | MR | Zbl
[17] J. Plemelj, Problems in the Sense of Riemann and Klein, Wiley, New York, 1964 | MR | Zbl
[18] M. Narasimhan, C. S. Seshadri, “Stable and unitary vector bundles on a compact Riemann surface”, Ann. of Math. (2), 82 (1965), 540–567 | DOI | MR | Zbl