Logarithmic equivalence of Welschinger and Gromov–Witten invariants
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 59 (2004) no. 6, pp. 1093-1116 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The Welschinger numbers, a kind of a real analogue of the Gromov–Witten numbers that count the complex rational curves through a given generic collection of points, bound from below the number of real rational curves for any generic collection of real points. Logarithmic equivalence of sequences is understood to mean the asymptotic equivalence of their logarithms. Such an equivalence is proved for the Welschinger and Gromov–Witten numbers of any toric Del Pezzo surface with its tautological real structure, in particular, of the projective plane, under the hypothesis that all, or almost all, the chosen points are real. A study is also made of the positivity of Welschinger numbers and their monotonicity with respect to the number of imaginary points.
@article{RM_2004_59_6_a5,
     author = {I. V. Itenberg and V. M. Kharlamov and E. I. Shustin},
     title = {Logarithmic equivalence of {Welschinger} and {Gromov{\textendash}Witten} invariants},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {1093--1116},
     year = {2004},
     volume = {59},
     number = {6},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/RM_2004_59_6_a5/}
}
TY  - JOUR
AU  - I. V. Itenberg
AU  - V. M. Kharlamov
AU  - E. I. Shustin
TI  - Logarithmic equivalence of Welschinger and Gromov–Witten invariants
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2004
SP  - 1093
EP  - 1116
VL  - 59
IS  - 6
UR  - http://geodesic.mathdoc.fr/item/RM_2004_59_6_a5/
LA  - en
ID  - RM_2004_59_6_a5
ER  - 
%0 Journal Article
%A I. V. Itenberg
%A V. M. Kharlamov
%A E. I. Shustin
%T Logarithmic equivalence of Welschinger and Gromov–Witten invariants
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2004
%P 1093-1116
%V 59
%N 6
%U http://geodesic.mathdoc.fr/item/RM_2004_59_6_a5/
%G en
%F RM_2004_59_6_a5
I. V. Itenberg; V. M. Kharlamov; E. I. Shustin. Logarithmic equivalence of Welschinger and Gromov–Witten invariants. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 59 (2004) no. 6, pp. 1093-1116. http://geodesic.mathdoc.fr/item/RM_2004_59_6_a5/

[1] P. Di Francesco, C. Itzykson, “Quantum intersection rings”, The Moduli Space of Curves (Texel Island, 1994), Progr. Math., 129, Birkhäuser, Boston, MA, 1995, 81–148 | MR

[2] L. Göttsche, R. Pandharipande, “The quantum cohomology of blow-ups of $\mathbb P^2$ and enumerative geometry”, J. Differential Geom., 48:1 (1998), 61–90 | MR | Zbl

[3] I. Itenberg, V. Kharlamov, E. Shustin, “Welschinger invariant and enumeration of real rational curves”, Internat. Math. Res. Notices, 49 (2003), 2639–2653 | DOI | MR | Zbl

[4] I. Itenberg, V. Kharlamov, E. Shustin, Appendix to “Welschinger invariant and enumeration of real rational curves”, arXiv: math.AG/0312142 | MR

[5] M. Kontsevich, Yu. Manin, “Gromov–Witten classes, quantum cohomology and enumerative geometry”, Comm. Math. Phys., 164:3 (1994), 525–562 | DOI | MR | Zbl

[6] G. Mikhalkin, “Counting curves via the lattice paths in polygons”, C. R. Math. Acad. Sci. Paris, 336:8 (2003), 629–634 | MR | Zbl

[7] G. Mikhalkin, Enumerative tropical algebraic geometry in $\mathbb R^2$, arXiv:math.AG/0312530 | MR

[8] E. Shustin, Patchworking singular algebraic curves, non-Archimedean amoebas and enumerative geometry, arXiv: math.AG/0211278

[9] E. Shustin, A tropical calculation of the Welschinger invariants of real toric Del Pezzo surfaces, arXiv: math.AG/0406099 | MR

[10] O. Viro, “Dequantization of real algebraic geometry on a logarithmic paper”, Proceedings of the 3rd European Congress of Mathematicians, Vol. I (Barcelona, 2000), Progr. Math., 201, Birkhäuser, Basel, 2001, 135–146 | MR

[11] J.-Y. Welschinger, “Invariants of real rational symplectic 4-manifolds and lower bounds in real enumerative geometry”, C. R. Math. Acad. Sci. Paris., 336:4 (2003), 341–344 | MR | Zbl

[12] J.-Y. Welschinger, Invariants of real symplectic 4-manifolds and lower bounds in real enumerative geometry, arXiv: math.AG/0303145 | MR