@article{RM_2004_59_6_a5,
author = {I. V. Itenberg and V. M. Kharlamov and E. I. Shustin},
title = {Logarithmic equivalence of {Welschinger} and {Gromov{\textendash}Witten} invariants},
journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
pages = {1093--1116},
year = {2004},
volume = {59},
number = {6},
language = {en},
url = {http://geodesic.mathdoc.fr/item/RM_2004_59_6_a5/}
}
TY - JOUR AU - I. V. Itenberg AU - V. M. Kharlamov AU - E. I. Shustin TI - Logarithmic equivalence of Welschinger and Gromov–Witten invariants JO - Trudy Matematicheskogo Instituta imeni V.A. Steklova PY - 2004 SP - 1093 EP - 1116 VL - 59 IS - 6 UR - http://geodesic.mathdoc.fr/item/RM_2004_59_6_a5/ LA - en ID - RM_2004_59_6_a5 ER -
%0 Journal Article %A I. V. Itenberg %A V. M. Kharlamov %A E. I. Shustin %T Logarithmic equivalence of Welschinger and Gromov–Witten invariants %J Trudy Matematicheskogo Instituta imeni V.A. Steklova %D 2004 %P 1093-1116 %V 59 %N 6 %U http://geodesic.mathdoc.fr/item/RM_2004_59_6_a5/ %G en %F RM_2004_59_6_a5
I. V. Itenberg; V. M. Kharlamov; E. I. Shustin. Logarithmic equivalence of Welschinger and Gromov–Witten invariants. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 59 (2004) no. 6, pp. 1093-1116. http://geodesic.mathdoc.fr/item/RM_2004_59_6_a5/
[1] P. Di Francesco, C. Itzykson, “Quantum intersection rings”, The Moduli Space of Curves (Texel Island, 1994), Progr. Math., 129, Birkhäuser, Boston, MA, 1995, 81–148 | MR
[2] L. Göttsche, R. Pandharipande, “The quantum cohomology of blow-ups of $\mathbb P^2$ and enumerative geometry”, J. Differential Geom., 48:1 (1998), 61–90 | MR | Zbl
[3] I. Itenberg, V. Kharlamov, E. Shustin, “Welschinger invariant and enumeration of real rational curves”, Internat. Math. Res. Notices, 49 (2003), 2639–2653 | DOI | MR | Zbl
[4] I. Itenberg, V. Kharlamov, E. Shustin, Appendix to “Welschinger invariant and enumeration of real rational curves”, arXiv: math.AG/0312142 | MR
[5] M. Kontsevich, Yu. Manin, “Gromov–Witten classes, quantum cohomology and enumerative geometry”, Comm. Math. Phys., 164:3 (1994), 525–562 | DOI | MR | Zbl
[6] G. Mikhalkin, “Counting curves via the lattice paths in polygons”, C. R. Math. Acad. Sci. Paris, 336:8 (2003), 629–634 | MR | Zbl
[7] G. Mikhalkin, Enumerative tropical algebraic geometry in $\mathbb R^2$, arXiv:math.AG/0312530 | MR
[8] E. Shustin, Patchworking singular algebraic curves, non-Archimedean amoebas and enumerative geometry, arXiv: math.AG/0211278
[9] E. Shustin, A tropical calculation of the Welschinger invariants of real toric Del Pezzo surfaces, arXiv: math.AG/0406099 | MR
[10] O. Viro, “Dequantization of real algebraic geometry on a logarithmic paper”, Proceedings of the 3rd European Congress of Mathematicians, Vol. I (Barcelona, 2000), Progr. Math., 201, Birkhäuser, Basel, 2001, 135–146 | MR
[11] J.-Y. Welschinger, “Invariants of real rational symplectic 4-manifolds and lower bounds in real enumerative geometry”, C. R. Math. Acad. Sci. Paris., 336:4 (2003), 341–344 | MR | Zbl
[12] J.-Y. Welschinger, Invariants of real symplectic 4-manifolds and lower bounds in real enumerative geometry, arXiv: math.AG/0303145 | MR