Three gems in the theory of linear differential equations (in the work of A.\,A.~Bolibrukh)
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 59 (2004) no. 6, pp. 1079-1091
Voir la notice de l'article provenant de la source Math-Net.Ru
Three classical results of A. A. Bolibrukh in the theory of linear systems with complex time are presented: the negative solution of the 21st Hilbert problem, sufficient conditions for this problem to have a positive solution, and sufficient conditions for the reducibility of a system with an irregular singular point to Birkhoff standard form.
@article{RM_2004_59_6_a4,
author = {Yu. S. Ilyashenko},
title = {Three gems in the theory of linear differential equations (in the work of {A.\,A.~Bolibrukh)}},
journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
pages = {1079--1091},
publisher = {mathdoc},
volume = {59},
number = {6},
year = {2004},
language = {en},
url = {http://geodesic.mathdoc.fr/item/RM_2004_59_6_a4/}
}
TY - JOUR AU - Yu. S. Ilyashenko TI - Three gems in the theory of linear differential equations (in the work of A.\,A.~Bolibrukh) JO - Trudy Matematicheskogo Instituta imeni V.A. Steklova PY - 2004 SP - 1079 EP - 1091 VL - 59 IS - 6 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/RM_2004_59_6_a4/ LA - en ID - RM_2004_59_6_a4 ER -
%0 Journal Article %A Yu. S. Ilyashenko %T Three gems in the theory of linear differential equations (in the work of A.\,A.~Bolibrukh) %J Trudy Matematicheskogo Instituta imeni V.A. Steklova %D 2004 %P 1079-1091 %V 59 %N 6 %I mathdoc %U http://geodesic.mathdoc.fr/item/RM_2004_59_6_a4/ %G en %F RM_2004_59_6_a4
Yu. S. Ilyashenko. Three gems in the theory of linear differential equations (in the work of A.\,A.~Bolibrukh). Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 59 (2004) no. 6, pp. 1079-1091. http://geodesic.mathdoc.fr/item/RM_2004_59_6_a4/