Three gems in the theory of linear differential equations (in the work of A.\,A.~Bolibrukh)
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 59 (2004) no. 6, pp. 1079-1091

Voir la notice de l'article provenant de la source Math-Net.Ru

Three classical results of A. A. Bolibrukh in the theory of linear systems with complex time are presented: the negative solution of the 21st Hilbert problem, sufficient conditions for this problem to have a positive solution, and sufficient conditions for the reducibility of a system with an irregular singular point to Birkhoff standard form.
@article{RM_2004_59_6_a4,
     author = {Yu. S. Ilyashenko},
     title = {Three gems in the theory of linear differential equations (in the work of {A.\,A.~Bolibrukh)}},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {1079--1091},
     publisher = {mathdoc},
     volume = {59},
     number = {6},
     year = {2004},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/RM_2004_59_6_a4/}
}
TY  - JOUR
AU  - Yu. S. Ilyashenko
TI  - Three gems in the theory of linear differential equations (in the work of A.\,A.~Bolibrukh)
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2004
SP  - 1079
EP  - 1091
VL  - 59
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/RM_2004_59_6_a4/
LA  - en
ID  - RM_2004_59_6_a4
ER  - 
%0 Journal Article
%A Yu. S. Ilyashenko
%T Three gems in the theory of linear differential equations (in the work of A.\,A.~Bolibrukh)
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2004
%P 1079-1091
%V 59
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/RM_2004_59_6_a4/
%G en
%F RM_2004_59_6_a4
Yu. S. Ilyashenko. Three gems in the theory of linear differential equations (in the work of A.\,A.~Bolibrukh). Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 59 (2004) no. 6, pp. 1079-1091. http://geodesic.mathdoc.fr/item/RM_2004_59_6_a4/