Three gems in the theory of linear differential equations (in the work of A. A. Bolibrukh)
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 59 (2004) no. 6, pp. 1079-1091 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Three classical results of A. A. Bolibrukh in the theory of linear systems with complex time are presented: the negative solution of the 21st Hilbert problem, sufficient conditions for this problem to have a positive solution, and sufficient conditions for the reducibility of a system with an irregular singular point to Birkhoff standard form.
@article{RM_2004_59_6_a4,
     author = {Yu. S. Ilyashenko},
     title = {Three gems in the theory of linear differential equations (in the work of {A.} {A.~Bolibrukh)}},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {1079--1091},
     year = {2004},
     volume = {59},
     number = {6},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/RM_2004_59_6_a4/}
}
TY  - JOUR
AU  - Yu. S. Ilyashenko
TI  - Three gems in the theory of linear differential equations (in the work of A. A. Bolibrukh)
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2004
SP  - 1079
EP  - 1091
VL  - 59
IS  - 6
UR  - http://geodesic.mathdoc.fr/item/RM_2004_59_6_a4/
LA  - en
ID  - RM_2004_59_6_a4
ER  - 
%0 Journal Article
%A Yu. S. Ilyashenko
%T Three gems in the theory of linear differential equations (in the work of A. A. Bolibrukh)
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2004
%P 1079-1091
%V 59
%N 6
%U http://geodesic.mathdoc.fr/item/RM_2004_59_6_a4/
%G en
%F RM_2004_59_6_a4
Yu. S. Ilyashenko. Three gems in the theory of linear differential equations (in the work of A. A. Bolibrukh). Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 59 (2004) no. 6, pp. 1079-1091. http://geodesic.mathdoc.fr/item/RM_2004_59_6_a4/

[1] D. V. Anosov, A. A. Bolibrukh, The Riemann–Hilbert Problem, Aspects Math., E22, Vieweg, Braunschweig, 1994 | MR | Zbl

[2] V. I. Arnold, Yu. S. Ilyashenko, “Obyknovennye differentsialnye uravneniya”, Dinamicheskie sistemy - 1, Itogi nauki i tekhniki. Sovr. problemy matem. Fundam. napr., 1, VINITI, M., 1985, 11–151 | MR

[3] A. A. Bolibrukh, “Problema Rimana–Gilberta na kompleksnoi proektivnoi pryamoi”, Matem. zametki., 46:3 (1989), 118–120 | MR | Zbl

[4] A. A. Bolibrukh, “Problema Rimana–Gilberta”, UMN, 45:2 (1990), 3–47 | MR | Zbl

[5] A. A. Bolibrukh, “O dostatochnykh usloviyakh polozhitelnoi razreshimosti problemy Rimana–Gilberta”, Matem. zametki, 51:2 (1992), 9–18 | MR

[6] A. A. Bolibrukh, “21-ya problema Gilberta dlya fuksovykh lineinykh sistem”, Trudy MIAN, 206, 1994, 1–145

[7] A. A. Bolibrukh, “Ob analiticheskom preobrazovanii k standartnoi birkgofovoi forme”, Dokl. RAN, 334:5 (1994), 553–555 | MR | Zbl

[8] A. A. Bolibrukh, Fuksovy differentsialnye uravneniya i golomorfnye rassloeniya, MTsNMO, M., 2000

[9] A. A. Bolibrukh, “Differentsialnye uravneniya s meromorfnymi koeffitsientami”, Sovremennye problemy matematiki, 1, MIAN, M., 2003, 29–82 | DOI | MR

[10] E A. Koddington, N. Levinson, Teoriya obyknovennykh differentsialnykh uravnenii, IL, M., 1958

[11] F. Khartman, Obyknovennye differentsialnye uravneniya, Mir, M., 1970 | MR | Zbl

[12] V. P. Kostov, “Fuchsian linear systems on $\mathbb CP^1$ and the Riemann–Hilbert problem”, C. R. Acad. Sci. Paris Sér. I Math., 315:2 (1992), 143–148 | MR | Zbl

[13] J. Plemelj, Problems in the sense of Riemann and Klein, Interscience Tracts Pure Appl. Math., 16, Wiley, New York, 1964 | MR | Zbl