On solutions with infinite energy and enstrophy of the Navier–Stokes system
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 59 (2004) no. 6, pp. 1061-1078 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The Cauchy problem is considered for the Navier–Stokes system. Local and global existence and uniqueness theorems are given for initial data whose Fourier transform decays at infinity as a power-law function with negative exponent and has a power-law singularity at zero. The paper contains a survey of known facts and some new results.
@article{RM_2004_59_6_a3,
     author = {Yu. Yu. Bakhtin and E. I. Dinaburg and Ya. G. Sinai},
     title = {On solutions with infinite energy and enstrophy of the {Navier{\textendash}Stokes} system},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {1061--1078},
     year = {2004},
     volume = {59},
     number = {6},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/RM_2004_59_6_a3/}
}
TY  - JOUR
AU  - Yu. Yu. Bakhtin
AU  - E. I. Dinaburg
AU  - Ya. G. Sinai
TI  - On solutions with infinite energy and enstrophy of the Navier–Stokes system
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2004
SP  - 1061
EP  - 1078
VL  - 59
IS  - 6
UR  - http://geodesic.mathdoc.fr/item/RM_2004_59_6_a3/
LA  - en
ID  - RM_2004_59_6_a3
ER  - 
%0 Journal Article
%A Yu. Yu. Bakhtin
%A E. I. Dinaburg
%A Ya. G. Sinai
%T On solutions with infinite energy and enstrophy of the Navier–Stokes system
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2004
%P 1061-1078
%V 59
%N 6
%U http://geodesic.mathdoc.fr/item/RM_2004_59_6_a3/
%G en
%F RM_2004_59_6_a3
Yu. Yu. Bakhtin; E. I. Dinaburg; Ya. G. Sinai. On solutions with infinite energy and enstrophy of the Navier–Stokes system. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 59 (2004) no. 6, pp. 1061-1078. http://geodesic.mathdoc.fr/item/RM_2004_59_6_a3/

[1] Yu. Bakhtin, “Existence and uniqueness of stationary solutions for 3D Navier–Stokes system with small random forcing via stochastic cascades”, J. Stat. Phys., 122:2 (2006), 351–360 | DOI | MR

[2] R. N. Bhattacharya, L. Chen, S. Dobson, R. B. Guenther, C. Orum, M. Ossiander, E. Thomann, E. C. Waymire, “Majorizing kernels and stochastic cascades with applications to incompressible Navier–Stokes equations”, Trans. Amer. Math. Soc., 355:12 (2003), 5003–5040 | DOI | MR | Zbl

[3] J. Bricmont, A. Kupiainen, R. Lefevere, “Ergodicity of the 2D Navier–Stokes equations with random forcing”, Comm. Math. Phys., 224:1 (2001), 65–81 | DOI | MR | Zbl

[4] M. Cannone, “Harmonic Analysis Tools for Solving the Incompessible Navier–Stokes Equations”, Handbook of Mathematical Fluid Dynamics, 3, Elsevier, Amsterdam, 2004, 161–244 | MR

[5] M. Cannone, F. Planchon, “On the regularity of the bilinear term of solutions to the incompressible Navier–Stokes equations”, Rev. Mat. Iberoamericana, 16:1 (2000), 1–16 | MR | Zbl

[6] P.-L. Chow, R. Z. Khasminskii, “Stationary solutions of nonlinear stochastic evolution equations”, Stochastic Anal. Appl., 15:5 (1997), 671–699 | DOI | MR | Zbl

[7] G. Da Prato, J. Zabczyk, Ergodicity for Infinite-Dimensional Systems, London Math. Soc. Lecture Note Ser., 229, Cambridge Univ. Press, Cambridge, 1996 | MR | Zbl

[8] W. E, J. C. Mattingly, Ya. Sinai, “Gibbsian dynamics and ergodicity for the stochastically forced Navier–Stokes equation”, Comm. Math. Phys., 224:1 (2001), 83–106 | DOI | MR | Zbl

[9] B. Ferrario, “Ergodic results for stochastic Navier–Stokes equation”, Stochastics Stochastics Rep., 60:3–4 (1997), 271–288 | MR | Zbl

[10] F. Flandoli, B. Maslowski, “Ergodicity of the 2-D Navier–Stokes equation under random perturbations”, Comm. Math. Phys., 172:1 (1995), 119–141 | DOI | MR | Zbl

[11] F. Flandoli, M. Romito, “Statistically stationary solutions to the 3-D Navier–Stokes equation do not show singularities”, Electron. J. Probab., 6:5 (2001), 1–15 | MR

[12] Y. Le Jan, A. S. Sznitman, “Stochastic cascades and 3-dimensional Navier–Stokes equations”, Probab. Theory Related Fields., 109:3 (1997), 343–366 | DOI | MR | Zbl

[13] T. Kato, “Strong $L^p$-solutions of the Navier–Stokes equations in $\mathbb R^m$, with applications to weak solutions”, Math. Z., 187:4 (1984), 471–480 | DOI | MR | Zbl

[14] S. Kuksin, A. Piatniski, A. Shirikyan, “A coupling approach to randomly forced nonlinear PDEs. II”, Comm. Math. Phys., 230:1 (2002), 81–85 | DOI | MR | Zbl

[15] S. Kuksin, A. Shirikyan, “Stochastic dissipative PDEs and Gibbs measures”, Comm. Math. Phys., 213:2 (2000), 291–330 | DOI | MR | Zbl

[16] S. Kuksin, A. Shirikyan, “Coupling approach to white-forced nonlinear PDEs”, J. Math. Pures Appl. (9), 81:6 (2002), 567–602 | DOI | MR | Zbl

[17] J. C. Mattingly, “On recent progress for the stochastic Navier Stokes equations”, Journées “Équations aux Dérivées Partielles” (Forges-les-Eaux, 2003), Exp. No XI, Univ. Nantes, Nantes, 2003 | MR | Zbl

[18] Ya. G. Sinai, “On local and global existence and uniqueness of solutions of the 3D-Navier–Stokes system on $\mathbb R^3$”, Perspectives in Analysis, Conference in honor of Lennart Carleson's 75th birthday, ed. M. Benedicks, P. Jones, S.Smirnov, Springer-Verlag, Berlin, 2005, 269–281 | MR