On solutions with infinite energy and enstrophy of the Navier--Stokes system
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 59 (2004) no. 6, pp. 1061-1078

Voir la notice de l'article provenant de la source Math-Net.Ru

The Cauchy problem is considered for the Navier–Stokes system. Local and global existence and uniqueness theorems are given for initial data whose Fourier transform decays at infinity as a power-law function with negative exponent and has a power-law singularity at zero. The paper contains a survey of known facts and some new results.
@article{RM_2004_59_6_a3,
     author = {Yu. Yu. Bakhtin and E. I. Dinaburg and Ya. G. Sinai},
     title = {On solutions with infinite energy and enstrophy of the {Navier--Stokes} system},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {1061--1078},
     publisher = {mathdoc},
     volume = {59},
     number = {6},
     year = {2004},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/RM_2004_59_6_a3/}
}
TY  - JOUR
AU  - Yu. Yu. Bakhtin
AU  - E. I. Dinaburg
AU  - Ya. G. Sinai
TI  - On solutions with infinite energy and enstrophy of the Navier--Stokes system
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2004
SP  - 1061
EP  - 1078
VL  - 59
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/RM_2004_59_6_a3/
LA  - en
ID  - RM_2004_59_6_a3
ER  - 
%0 Journal Article
%A Yu. Yu. Bakhtin
%A E. I. Dinaburg
%A Ya. G. Sinai
%T On solutions with infinite energy and enstrophy of the Navier--Stokes system
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2004
%P 1061-1078
%V 59
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/RM_2004_59_6_a3/
%G en
%F RM_2004_59_6_a3
Yu. Yu. Bakhtin; E. I. Dinaburg; Ya. G. Sinai. On solutions with infinite energy and enstrophy of the Navier--Stokes system. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 59 (2004) no. 6, pp. 1061-1078. http://geodesic.mathdoc.fr/item/RM_2004_59_6_a3/