@article{RM_2004_59_6_a3,
author = {Yu. Yu. Bakhtin and E. I. Dinaburg and Ya. G. Sinai},
title = {On solutions with infinite energy and enstrophy of the {Navier{\textendash}Stokes} system},
journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
pages = {1061--1078},
year = {2004},
volume = {59},
number = {6},
language = {en},
url = {http://geodesic.mathdoc.fr/item/RM_2004_59_6_a3/}
}
TY - JOUR AU - Yu. Yu. Bakhtin AU - E. I. Dinaburg AU - Ya. G. Sinai TI - On solutions with infinite energy and enstrophy of the Navier–Stokes system JO - Trudy Matematicheskogo Instituta imeni V.A. Steklova PY - 2004 SP - 1061 EP - 1078 VL - 59 IS - 6 UR - http://geodesic.mathdoc.fr/item/RM_2004_59_6_a3/ LA - en ID - RM_2004_59_6_a3 ER -
%0 Journal Article %A Yu. Yu. Bakhtin %A E. I. Dinaburg %A Ya. G. Sinai %T On solutions with infinite energy and enstrophy of the Navier–Stokes system %J Trudy Matematicheskogo Instituta imeni V.A. Steklova %D 2004 %P 1061-1078 %V 59 %N 6 %U http://geodesic.mathdoc.fr/item/RM_2004_59_6_a3/ %G en %F RM_2004_59_6_a3
Yu. Yu. Bakhtin; E. I. Dinaburg; Ya. G. Sinai. On solutions with infinite energy and enstrophy of the Navier–Stokes system. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 59 (2004) no. 6, pp. 1061-1078. http://geodesic.mathdoc.fr/item/RM_2004_59_6_a3/
[1] Yu. Bakhtin, “Existence and uniqueness of stationary solutions for 3D Navier–Stokes system with small random forcing via stochastic cascades”, J. Stat. Phys., 122:2 (2006), 351–360 | DOI | MR
[2] R. N. Bhattacharya, L. Chen, S. Dobson, R. B. Guenther, C. Orum, M. Ossiander, E. Thomann, E. C. Waymire, “Majorizing kernels and stochastic cascades with applications to incompressible Navier–Stokes equations”, Trans. Amer. Math. Soc., 355:12 (2003), 5003–5040 | DOI | MR | Zbl
[3] J. Bricmont, A. Kupiainen, R. Lefevere, “Ergodicity of the 2D Navier–Stokes equations with random forcing”, Comm. Math. Phys., 224:1 (2001), 65–81 | DOI | MR | Zbl
[4] M. Cannone, “Harmonic Analysis Tools for Solving the Incompessible Navier–Stokes Equations”, Handbook of Mathematical Fluid Dynamics, 3, Elsevier, Amsterdam, 2004, 161–244 | MR
[5] M. Cannone, F. Planchon, “On the regularity of the bilinear term of solutions to the incompressible Navier–Stokes equations”, Rev. Mat. Iberoamericana, 16:1 (2000), 1–16 | MR | Zbl
[6] P.-L. Chow, R. Z. Khasminskii, “Stationary solutions of nonlinear stochastic evolution equations”, Stochastic Anal. Appl., 15:5 (1997), 671–699 | DOI | MR | Zbl
[7] G. Da Prato, J. Zabczyk, Ergodicity for Infinite-Dimensional Systems, London Math. Soc. Lecture Note Ser., 229, Cambridge Univ. Press, Cambridge, 1996 | MR | Zbl
[8] W. E, J. C. Mattingly, Ya. Sinai, “Gibbsian dynamics and ergodicity for the stochastically forced Navier–Stokes equation”, Comm. Math. Phys., 224:1 (2001), 83–106 | DOI | MR | Zbl
[9] B. Ferrario, “Ergodic results for stochastic Navier–Stokes equation”, Stochastics Stochastics Rep., 60:3–4 (1997), 271–288 | MR | Zbl
[10] F. Flandoli, B. Maslowski, “Ergodicity of the 2-D Navier–Stokes equation under random perturbations”, Comm. Math. Phys., 172:1 (1995), 119–141 | DOI | MR | Zbl
[11] F. Flandoli, M. Romito, “Statistically stationary solutions to the 3-D Navier–Stokes equation do not show singularities”, Electron. J. Probab., 6:5 (2001), 1–15 | MR
[12] Y. Le Jan, A. S. Sznitman, “Stochastic cascades and 3-dimensional Navier–Stokes equations”, Probab. Theory Related Fields., 109:3 (1997), 343–366 | DOI | MR | Zbl
[13] T. Kato, “Strong $L^p$-solutions of the Navier–Stokes equations in $\mathbb R^m$, with applications to weak solutions”, Math. Z., 187:4 (1984), 471–480 | DOI | MR | Zbl
[14] S. Kuksin, A. Piatniski, A. Shirikyan, “A coupling approach to randomly forced nonlinear PDEs. II”, Comm. Math. Phys., 230:1 (2002), 81–85 | DOI | MR | Zbl
[15] S. Kuksin, A. Shirikyan, “Stochastic dissipative PDEs and Gibbs measures”, Comm. Math. Phys., 213:2 (2000), 291–330 | DOI | MR | Zbl
[16] S. Kuksin, A. Shirikyan, “Coupling approach to white-forced nonlinear PDEs”, J. Math. Pures Appl. (9), 81:6 (2002), 567–602 | DOI | MR | Zbl
[17] J. C. Mattingly, “On recent progress for the stochastic Navier Stokes equations”, Journées “Équations aux Dérivées Partielles” (Forges-les-Eaux, 2003), Exp. No XI, Univ. Nantes, Nantes, 2003 | MR | Zbl
[18] Ya. G. Sinai, “On local and global existence and uniqueness of solutions of the 3D-Navier–Stokes system on $\mathbb R^3$”, Perspectives in Analysis, Conference in honor of Lennart Carleson's 75th birthday, ed. M. Benedicks, P. Jones, S.Smirnov, Springer-Verlag, Berlin, 2005, 269–281 | MR