Birkhoff's reduction problem
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 59 (2004) no. 6, pp. 1047-1059 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Birkhoff's reduction problem is to find an analytic or meromorphic transformation reducing a linear system of meromorphic ordinary differential equations to a form in which the coefficients are polynomials. This article is a survey of existing results, with several new results stated. In particular, it is shown that every irreducible system with an unramified formal fundamental solution can be transformed meromorphically into Birkhoff standard form, that is, to a system of minimal Poincaré rank and with normalized eigenvalues at the origin.
@article{RM_2004_59_6_a2,
     author = {B. Balser},
     title = {Birkhoff's reduction problem},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {1047--1059},
     year = {2004},
     volume = {59},
     number = {6},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/RM_2004_59_6_a2/}
}
TY  - JOUR
AU  - B. Balser
TI  - Birkhoff's reduction problem
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2004
SP  - 1047
EP  - 1059
VL  - 59
IS  - 6
UR  - http://geodesic.mathdoc.fr/item/RM_2004_59_6_a2/
LA  - en
ID  - RM_2004_59_6_a2
ER  - 
%0 Journal Article
%A B. Balser
%T Birkhoff's reduction problem
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2004
%P 1047-1059
%V 59
%N 6
%U http://geodesic.mathdoc.fr/item/RM_2004_59_6_a2/
%G en
%F RM_2004_59_6_a2
B. Balser. Birkhoff's reduction problem. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 59 (2004) no. 6, pp. 1047-1059. http://geodesic.mathdoc.fr/item/RM_2004_59_6_a2/

[1] W. Balser, “Meromorphic transformation to Birkhoff standard form in dimension three”, J. Fac. Sci. Univ. Tokyo Sect. IA Math., 36:2 (1989), 233–246 | MR | Zbl

[2] W. Balser, “Analytic transformation to Birkhoff standard form in dimension three”, Funkcial. Ekvac., 33:1 (1990), 59–67 | MR | Zbl

[3] W. Balser, Formal Power Series and Linear Systems of Meromorphic Ordinary Differential Equations, Springer-Verlag, New York, 2000 | MR | Zbl

[4] W. Balser, A. A. Bolibruch, Transformations of reducible equations to Birkhoff standard form, Ulmer Seminare – Funktionalanalysis und Differentialgleichungen, University Ulm, 1997; http://www.mathematik.uni-ulm.de/m5/balser/papers.html

[5] W. Balser, W. B. Jurkat, D. A. Lutz, “A general theory of invariants for meromorphic differential equations. I. Formal invariants”, Funkcial. Ekvac., 22:2 (1979), 197–221 | MR | Zbl

[6] W. Balser, W. B. Jurkat, D. A. Lutz, “A general theory of invariants for meromorphic differential equations. II. Proper invariants”, Funkcial. Ekvac., 22:3 (1979), 257–283 | MR | Zbl

[7] W. Balser, W. B. Jurkat, D. A. Lutz, “Invariants for reducible systems of meromorphic differential equations”, Proc. Edinburgh Math. Soc. (2), 23:2 (1980), 163–186 | DOI | MR | Zbl

[8] G. D. Birkhoff, “Equivalent singular points of differential equations”, Math. Ann., 74 (1913), 134–139 | DOI | MR | Zbl

[9] G. D. Birkhoff, “A theorem on matrics of analytic functions”, Math. Ann., 74 (1913), 122–133 | DOI | MR

[10] A. A. Bolibrukh, “Ob analiticheskom preobrazovanii k birkgofovoi standartnoi forme”, Trudy MIAN, 203, 1994, 33–40 | MR | Zbl

[11] A. A. Bolibrukh, “Ob analiticheskom preobrazovanii k birkgofovoi standartnoi forme”, Dokl. RAN, 334:5 (1994), 553–555 | MR | Zbl

[12] F. R. Gantmakher, Teoriya matrits, Gostekhizdat, M., 1953

[13] D. Hilbert, “Grundzüge einer allgemeinen Theorie der linearen Integralgleihungen (Dritte Mitt.)”, Nachr. Ges. Wiss. Göttingen., 1905, 307–338 | Zbl

[14] W. B. Jurkat, Meromorphe Differentialgleichungen, Lecture Notes in Math., 637, Springer-Verlag, Berlin, 1978 | MR | Zbl

[15] W. B. Jurkat, D. A. Lutz, A. Peyerimhoff, “Birkhoff invariants and effective calculations for meromorphic linear differential equations”, J. Math. Anal. Appl., 53:2 (1976), 438–470 | DOI | MR | Zbl

[16] P. Masani, “On a result of G. D. Birkhoff on linear differential systems”, Proc. Amer. Math. Soc., 10 (1959), 696–698 | DOI | MR | Zbl

[17] J. Plemelj, “Riemannsche Funktionenscharen mit gegebener Monodromiegruppe”, Monatsh. Math. Phys., 19 (1908), 211–246 | DOI | MR | Zbl

[18] Y. Sibuya, Linear Differential Equations in the Complex Domain: Problems of Analytic Continuation, Transl. Math. Monogr., 82, Amer. Math. Soc., Providence, RI, 1990 | MR | Zbl

[19] H. L. Turrittin, “Reduction of ordinary differential equations to the Birkhoff canonical form”, Trans. Amer. Math. Soc., 107 (1963), 485–507 | DOI | MR | Zbl