@article{RM_2004_59_6_a2,
author = {B. Balser},
title = {Birkhoff's reduction problem},
journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
pages = {1047--1059},
year = {2004},
volume = {59},
number = {6},
language = {en},
url = {http://geodesic.mathdoc.fr/item/RM_2004_59_6_a2/}
}
B. Balser. Birkhoff's reduction problem. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 59 (2004) no. 6, pp. 1047-1059. http://geodesic.mathdoc.fr/item/RM_2004_59_6_a2/
[1] W. Balser, “Meromorphic transformation to Birkhoff standard form in dimension three”, J. Fac. Sci. Univ. Tokyo Sect. IA Math., 36:2 (1989), 233–246 | MR | Zbl
[2] W. Balser, “Analytic transformation to Birkhoff standard form in dimension three”, Funkcial. Ekvac., 33:1 (1990), 59–67 | MR | Zbl
[3] W. Balser, Formal Power Series and Linear Systems of Meromorphic Ordinary Differential Equations, Springer-Verlag, New York, 2000 | MR | Zbl
[4] W. Balser, A. A. Bolibruch, Transformations of reducible equations to Birkhoff standard form, Ulmer Seminare – Funktionalanalysis und Differentialgleichungen, University Ulm, 1997; http://www.mathematik.uni-ulm.de/m5/balser/papers.html
[5] W. Balser, W. B. Jurkat, D. A. Lutz, “A general theory of invariants for meromorphic differential equations. I. Formal invariants”, Funkcial. Ekvac., 22:2 (1979), 197–221 | MR | Zbl
[6] W. Balser, W. B. Jurkat, D. A. Lutz, “A general theory of invariants for meromorphic differential equations. II. Proper invariants”, Funkcial. Ekvac., 22:3 (1979), 257–283 | MR | Zbl
[7] W. Balser, W. B. Jurkat, D. A. Lutz, “Invariants for reducible systems of meromorphic differential equations”, Proc. Edinburgh Math. Soc. (2), 23:2 (1980), 163–186 | DOI | MR | Zbl
[8] G. D. Birkhoff, “Equivalent singular points of differential equations”, Math. Ann., 74 (1913), 134–139 | DOI | MR | Zbl
[9] G. D. Birkhoff, “A theorem on matrics of analytic functions”, Math. Ann., 74 (1913), 122–133 | DOI | MR
[10] A. A. Bolibrukh, “Ob analiticheskom preobrazovanii k birkgofovoi standartnoi forme”, Trudy MIAN, 203, 1994, 33–40 | MR | Zbl
[11] A. A. Bolibrukh, “Ob analiticheskom preobrazovanii k birkgofovoi standartnoi forme”, Dokl. RAN, 334:5 (1994), 553–555 | MR | Zbl
[12] F. R. Gantmakher, Teoriya matrits, Gostekhizdat, M., 1953
[13] D. Hilbert, “Grundzüge einer allgemeinen Theorie der linearen Integralgleihungen (Dritte Mitt.)”, Nachr. Ges. Wiss. Göttingen., 1905, 307–338 | Zbl
[14] W. B. Jurkat, Meromorphe Differentialgleichungen, Lecture Notes in Math., 637, Springer-Verlag, Berlin, 1978 | MR | Zbl
[15] W. B. Jurkat, D. A. Lutz, A. Peyerimhoff, “Birkhoff invariants and effective calculations for meromorphic linear differential equations”, J. Math. Anal. Appl., 53:2 (1976), 438–470 | DOI | MR | Zbl
[16] P. Masani, “On a result of G. D. Birkhoff on linear differential systems”, Proc. Amer. Math. Soc., 10 (1959), 696–698 | DOI | MR | Zbl
[17] J. Plemelj, “Riemannsche Funktionenscharen mit gegebener Monodromiegruppe”, Monatsh. Math. Phys., 19 (1908), 211–246 | DOI | MR | Zbl
[18] Y. Sibuya, Linear Differential Equations in the Complex Domain: Problems of Analytic Continuation, Transl. Math. Monogr., 82, Amer. Math. Soc., Providence, RI, 1990 | MR | Zbl
[19] H. L. Turrittin, “Reduction of ordinary differential equations to the Birkhoff canonical form”, Trans. Amer. Math. Soc., 107 (1963), 485–507 | DOI | MR | Zbl