Geometry and dynamics of Galois fields
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 59 (2004) no. 6, pp. 1029-1046
Cet article a éte moissonné depuis la source Math-Net.Ru
The tables defining operations in finite fields possess many properties of tables of random numbers. A distinctive variant is discussed of automorphisms of tori in the theory of dynamical systems for which a torus has finitely many points. Also established are the actions of Frobenius transformations of finite fields onto projective structures of finite projective spaces describing the geometry of the field.
@article{RM_2004_59_6_a1,
author = {V. I. Arnol'd},
title = {Geometry and dynamics of {Galois} fields},
journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
pages = {1029--1046},
year = {2004},
volume = {59},
number = {6},
language = {en},
url = {http://geodesic.mathdoc.fr/item/RM_2004_59_6_a1/}
}
V. I. Arnol'd. Geometry and dynamics of Galois fields. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 59 (2004) no. 6, pp. 1029-1046. http://geodesic.mathdoc.fr/item/RM_2004_59_6_a1/
[1] V. I. Arnold, Fermat dynamics of matrices, finite circles and finite Lobachevsky planes, Cahiers du CEREMADE, No. 0434, Université Paris-Dauphine, Paris, 3 juin 2004