The structure of the set of semidualizing complexes
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 59 (2004) no. 5, pp. 954-955
Cet article a éte moissonné depuis la source Math-Net.Ru
@article{RM_2004_59_5_a6,
author = {A. A. Gerko},
title = {The structure of the set of semidualizing complexes},
journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
pages = {954--955},
year = {2004},
volume = {59},
number = {5},
language = {en},
url = {http://geodesic.mathdoc.fr/item/RM_2004_59_5_a6/}
}
A. A. Gerko. The structure of the set of semidualizing complexes. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 59 (2004) no. 5, pp. 954-955. http://geodesic.mathdoc.fr/item/RM_2004_59_5_a6/
[1] L. W. Christensen, Trans. Amer. Math. Soc., 353:5 (2001), 1839–1883 | DOI | MR | Zbl
[2] A. A. Gerko, Matem. sb., 192:8 (2001), 79–94 | MR | Zbl
[3] M. Auslander, M. Bridger, Mem. Amer. Math. Soc., 94 (1969) | MR | Zbl
[4] L. L. Avramov, H.-B. Foxby, Proc. London Math. Soc. (3)., 75:2 (1997), 241–270 | DOI | MR | Zbl
[5] A. A. Gerko, “Ob udobnykh modulyakh i $G$-sovershennykh idealakh”, UMN., 56:4 (2001), 141–142 | MR | Zbl
[6] T. Araya, R. Takahashi, Y. Yoshino, “Homological invariants associated to semidualizing bimodules”, Preprint, 2002
[7] Y. Yoshino, NATO Sci. Ser. II Math. Phys. Chem., 115 (2003), 255–273 | MR | Zbl