Lectures on mirror symmetry, derived categories, and $D$-branes
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 59 (2004) no. 5, pp. 907-940

Voir la notice de l'article provenant de la source Math-Net.Ru

This paper, mainly intended for a mathematical audience, is an introduction to homological mirror symmetry, derived categories, and topological $D$-branes. Mirror symmetry from the point of view of physics is explained, along with the relationship between symmetry and derived categories, and the reason why the Fukaya category must be extended by using co-isotropic $A$-branes. There is also a discussion of how to extend the definition of the Floer homology to these objects and a description of mirror symmetry for flat tori. The paper consists of four lectures given at the Institute of Pure and Applied Mathematics (Los Angeles) in March 2003, as a part of the programme “Symplectic Geometry and Physics”.
@article{RM_2004_59_5_a2,
     author = {A. N. Kapustin and D. O. Orlov},
     title = {Lectures on mirror symmetry, derived categories, and $D$-branes},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {907--940},
     publisher = {mathdoc},
     volume = {59},
     number = {5},
     year = {2004},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/RM_2004_59_5_a2/}
}
TY  - JOUR
AU  - A. N. Kapustin
AU  - D. O. Orlov
TI  - Lectures on mirror symmetry, derived categories, and $D$-branes
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2004
SP  - 907
EP  - 940
VL  - 59
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/RM_2004_59_5_a2/
LA  - en
ID  - RM_2004_59_5_a2
ER  - 
%0 Journal Article
%A A. N. Kapustin
%A D. O. Orlov
%T Lectures on mirror symmetry, derived categories, and $D$-branes
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2004
%P 907-940
%V 59
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/RM_2004_59_5_a2/
%G en
%F RM_2004_59_5_a2
A. N. Kapustin; D. O. Orlov. Lectures on mirror symmetry, derived categories, and $D$-branes. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 59 (2004) no. 5, pp. 907-940. http://geodesic.mathdoc.fr/item/RM_2004_59_5_a2/