@article{RM_2004_59_5_a2,
author = {A. N. Kapustin and D. O. Orlov},
title = {Lectures on mirror symmetry, derived categories, and $D$-branes},
journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
pages = {907--940},
year = {2004},
volume = {59},
number = {5},
language = {en},
url = {http://geodesic.mathdoc.fr/item/RM_2004_59_5_a2/}
}
TY - JOUR AU - A. N. Kapustin AU - D. O. Orlov TI - Lectures on mirror symmetry, derived categories, and $D$-branes JO - Trudy Matematicheskogo Instituta imeni V.A. Steklova PY - 2004 SP - 907 EP - 940 VL - 59 IS - 5 UR - http://geodesic.mathdoc.fr/item/RM_2004_59_5_a2/ LA - en ID - RM_2004_59_5_a2 ER -
A. N. Kapustin; D. O. Orlov. Lectures on mirror symmetry, derived categories, and $D$-branes. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 59 (2004) no. 5, pp. 907-940. http://geodesic.mathdoc.fr/item/RM_2004_59_5_a2/
[1] P. S. Aspinwall, A. E. Lawrence, “Derived categories and zero-brane stability”, J. High Energy Phys., 2001, no. 8, paper 4 | MR | Zbl
[2] M. F. Atiyah, “Topological quantum field theories”, Inst. Hautes Études Sci. Publ. Math., 68 (1988), 175–186 | DOI | MR | Zbl
[3] A. I. Bondal, M. M. Kapranov, “Osnaschennye triangulirovannye kategorii”, Matem. sb., 181:5 (1990), 669–683 | MR | Zbl
[4] S. Cappell, R. Lee, E. Y. Miller, “On the Maslov index”, Comm. Pure Appl. Math., 47:2 (1994), 121–186 | DOI | MR | Zbl
[5] D.-E. Diaconescu, “Enhanced $D$-brane categories from string field theory”, J. High Energy Phys., 2001, no. 6, paper 16 | MR
[6] R. Dijkgraaf, “Intersection theory, integrable hierarchies and topological field theory”, New Symmetry Principles in Quantum Field Theory (Cargèse, 1991), NATO Adv. Sci. Inst. Ser. B Phys., 295, Plenum, New York, 1992, 95–158 | MR
[7] M. R. Douglas, “$D$-branes, categories and $N=1$ supersymmetry”, J. Math. Phys., 42:7 (2001), 2818–2843 | DOI | MR | Zbl
[8] K. Fukaya, Morse Homotopy, $A_\infty$-category and Floer Homologies, Preprint No 020-94, MSRI, Berkley, 1994 | MR
[9] K. Fukaya, Y-G. Oh, H. Ohta, K. Ono, Lagrangian intersection Floer theory – anomaly and obstruction, Preprint http://www.kusm.kyoto-u.ac.jp/~fukaya/fukaya.html
[10] K. Gawȩdzki, “Lectures On conformal field theory”, Quantum Fields and Strings: A Course for Mathematicians, vol. 1, 2 (Princeton, NJ, 1996/1997), Amer. Math. Soc., Providence, RI, 1999, 727–805 | MR | Zbl
[11] I. M. Gelfand, I. Ya. Dorfman, “Skobka Skhoutena i gamiltonovy operatory”, Funkts. analiz i ego pril., 14:3 (1980), 71–74 | MR | Zbl
[12] S. I. Gelfand, Yu. I. Manin, Metody gomologicheskoi algebry. T. 1. Vvedenie v teoriyu kogomologii i proizvodnye kategorii, Nauka, M., 1988 | MR
[13] V. Golyshev, V. Lunts, D. Orlov, “Mirror symmetry for abelian varieties”, J. Algebraic Geom., 10:3 (2001), 433–496 | MR | Zbl
[14] B. R. Greene, M. R. Plesser, “Duality in Calabi–Yau moduli space”, Nuclear Phys. B, 338:1 (1990), 15–37 | DOI | MR
[15] R. Hartshorne, Residues and Duality, Lecture Notes in Math., 20, Springer-Verlag, Berlin, 1966 | MR | Zbl
[16] R. T. Hoobler, “Brauer groups of abelian schemes”, Ann. Sci. École Norm. Sup. (4), 5 (1972), 45–70 | MR | Zbl
[17] K. Hori, S. Katz, A. Klemm, R. Pandharipande, R. Thomas, C. Vafa, R. Vakil, E. Zaslow, Mirror Symmetry, Clay Math. Monogr., 1, Amer. Math. Soc. / Clay Mathematics Inst., Providence, RI / Cambridge, MA, 2003 | MR | Zbl
[18] A. Kapustin, “Topological strings on noncommutative manifolds”, Int. J. Geom. Methods Mod. Phys., 1:1–2 (2004), 49–81 | DOI | MR | Zbl
[19] A. Kapustin, D. Orlov, “Vertex algebras, mirror symmetry, and D-branes: The case of complex tori”, Comm. Math. Phys., 233:1 (2003), 79–136 | DOI | MR | Zbl
[20] A. Kapustin, D. Orlov, “Remarks on A-branes, mirror symmetry, and the Fukaya category”, J. Geom. Phys., 48:1 (2003), 84–99 | DOI | MR | Zbl
[21] M. Kasivara, P. Shapira, Puchki na mnogoobraziyakh, Mir, M., 1997
[22] S. Katz, E. Sharpe, “D-branes, open string vertex operators, and Ext groups”, Adv. Theor. Math. Phys., 6:6 (2002), 979–1030 | MR
[23] B. Keller, “Derived categories and their uses”, Handbook of Algebra, vol. 1, ed. M. Hazewinkel, North-Holland, Amsterdam, 1996, 671–701 | MR | Zbl
[24] B. Keller, “Introduction to $A_\infty$-infinity algebras and modules”, Homology Homotopy Appl., 3:1 (2001), 1–35 (electronic) | MR
[25] M. Kontsevich, “Homological algebra of mirror symmetry”, Proceedings of International Congress of Mathematicians (Zurich, 1994), Birkhäuser, Basel, 1995, 120–139 | MR | Zbl
[26] M. Kontsevich, Y. Soibelman, “Homological mirror symmetry and torus fibrations”, Symplectic Geometry and Mirror Symmetry (Seoul, 2000), World Scientific, River Edge, NJ, 2001, 203–263 | MR | Zbl
[27] C. I. Lazaroiu, “On the structure of open-closed topological field theory in two dimensions”, Nuclear Phys. B, 603:3 (2001), 497–530 | DOI | MR | Zbl
[28] C. I. Lazaroiu, “Unitarity, D-brane dynamics and D-brane categories”, J. High Energy Phys., 2001, no. 12, paper 31 | MR
[29] W. Lerche, C. Vafa, N. P. Warner, “Chiral rings in $N=2$ superconformal theories”, Nuclear Phys. B, 324:2 (1989), 427–474 | DOI | MR
[30] Y. Li, Anomalies and graded coisotropic branes, arXiv:hep-th/0405280 | MR
[31] G. Moore, “D-branes, RR-fields and K-theory”, The Duality Workshop, 2001; http://online.itp.ucsb.edu/online/mp01
[32] S. Mukai, “Duality between $D(X)$ and $D(\widehat X)$ with its application to Picard sheaves”, Nagoya Math. J., 81 (1981), 153–175 | MR | Zbl
[33] D. O. Orlov, “Equivalences of derived categories and $K$3 surfaces”, J. Math. Sci. (New York), 84:5 (1997), 1361–1381 | DOI | MR | Zbl
[34] D. O. Orlov, “Proizvodnye kategorii kogerentnykh puchkov na abelevykh mnogoobraziyakh i ekvivalentnosti mezhdu nimi”, Izv. RAN. Ser. matem., 66:3 (2002), 131–158 | MR | Zbl
[35] D. O. Orlov, “Proizvodnye kategorii kogerentnykh puchkov i ekvivalentnosti mezhdu nimi”, UMN, 58:3 (2003), 89–172 | MR | Zbl
[36] J. Polchinski, String Theory. V. 2: Superstring Theory and Beyond, Cambridge Univ. Press, Cambridge, 1998
[37] J. Polchinski, “Dirichlet-branes and Ramond–Ramond charges”, Phys. Rev. Lett., 75:26 (1995), 4724–4727 | DOI | MR | Zbl
[38] A. Polishchuk, “Symplectic biextensions and generalization of the Fourier–Mukai transforms”, Math. Res. Lett., 3:6 (1996), 813–828 | MR | Zbl
[39] A. Polishchuk, E. Zaslow, “Categorical mirror symmetry: The elliptic curve”, Adv. Theor. Math. Phys., 2:2 (1998), 443–470 | MR | Zbl
[40] G. B. Segal, “The definition of conformal field theory”, Differential Geometrical Methods in Theoretical Physics (Como, 1987), NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci., 250, Kluwer, Dordrecht, 1988, 165–171 | MR
[41] A. Strominger, S. T. Yau, E. Zaslow, “Mirror symmetry is $T$-duality”, Nuclear Phys. B., 479:1–2 (1996), 243–259 | DOI | MR | Zbl
[42] R. G. Swan, “Hochschild cohomology of quasiprojective schemes”, J. Pure Appl. Algebra., 110:1 (1996), 57–80 | DOI | MR | Zbl
[43] J. L. Verdier, “Catégories dérivées”, Cohomologie Étale. Séminaire de Géométrie Algébrique du Bois-Marie SGA $4\frac12$, Lecture Notes in Math., 569, Springer-Verlag, Berlin, 1977, 262–311 | MR
[44] E. Witten, “Phases of $N=2$ theories in two dimensions”, Nucl. Phys. B, 403:1–2 (1993), 159–222 | DOI | MR | Zbl
[45] E. Witten, “Topological sigma models”, Comm. Math. Phys., 118:3 (1988), 411–449 | DOI | MR | Zbl
[46] E. Witten, “Mirror manifolds and topological field theory”, Essays on Mirror Manifolds, Internat. Press, Hong Kong, 1992, 120–158 | MR
[47] E. Witten, “Chern–Simons gauge theory as a string theory”, The Floer Memorial Volume, Progr. Math., 133, Birkhaüser, Basel, 1995, 637–678 | MR