Lectures on mirror symmetry, derived categories, and $D$-branes
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 59 (2004) no. 5, pp. 907-940 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

This paper, mainly intended for a mathematical audience, is an introduction to homological mirror symmetry, derived categories, and topological $D$-branes. Mirror symmetry from the point of view of physics is explained, along with the relationship between symmetry and derived categories, and the reason why the Fukaya category must be extended by using co-isotropic $A$-branes. There is also a discussion of how to extend the definition of the Floer homology to these objects and a description of mirror symmetry for flat tori. The paper consists of four lectures given at the Institute of Pure and Applied Mathematics (Los Angeles) in March 2003, as a part of the programme “Symplectic Geometry and Physics”.
@article{RM_2004_59_5_a2,
     author = {A. N. Kapustin and D. O. Orlov},
     title = {Lectures on mirror symmetry, derived categories, and $D$-branes},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {907--940},
     year = {2004},
     volume = {59},
     number = {5},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/RM_2004_59_5_a2/}
}
TY  - JOUR
AU  - A. N. Kapustin
AU  - D. O. Orlov
TI  - Lectures on mirror symmetry, derived categories, and $D$-branes
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2004
SP  - 907
EP  - 940
VL  - 59
IS  - 5
UR  - http://geodesic.mathdoc.fr/item/RM_2004_59_5_a2/
LA  - en
ID  - RM_2004_59_5_a2
ER  - 
%0 Journal Article
%A A. N. Kapustin
%A D. O. Orlov
%T Lectures on mirror symmetry, derived categories, and $D$-branes
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2004
%P 907-940
%V 59
%N 5
%U http://geodesic.mathdoc.fr/item/RM_2004_59_5_a2/
%G en
%F RM_2004_59_5_a2
A. N. Kapustin; D. O. Orlov. Lectures on mirror symmetry, derived categories, and $D$-branes. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 59 (2004) no. 5, pp. 907-940. http://geodesic.mathdoc.fr/item/RM_2004_59_5_a2/

[1] P. S. Aspinwall, A. E. Lawrence, “Derived categories and zero-brane stability”, J. High Energy Phys., 2001, no. 8, paper 4 | MR | Zbl

[2] M. F. Atiyah, “Topological quantum field theories”, Inst. Hautes Études Sci. Publ. Math., 68 (1988), 175–186 | DOI | MR | Zbl

[3] A. I. Bondal, M. M. Kapranov, “Osnaschennye triangulirovannye kategorii”, Matem. sb., 181:5 (1990), 669–683 | MR | Zbl

[4] S. Cappell, R. Lee, E. Y. Miller, “On the Maslov index”, Comm. Pure Appl. Math., 47:2 (1994), 121–186 | DOI | MR | Zbl

[5] D.-E. Diaconescu, “Enhanced $D$-brane categories from string field theory”, J. High Energy Phys., 2001, no. 6, paper 16 | MR

[6] R. Dijkgraaf, “Intersection theory, integrable hierarchies and topological field theory”, New Symmetry Principles in Quantum Field Theory (Cargèse, 1991), NATO Adv. Sci. Inst. Ser. B Phys., 295, Plenum, New York, 1992, 95–158 | MR

[7] M. R. Douglas, “$D$-branes, categories and $N=1$ supersymmetry”, J. Math. Phys., 42:7 (2001), 2818–2843 | DOI | MR | Zbl

[8] K. Fukaya, Morse Homotopy, $A_\infty$-category and Floer Homologies, Preprint No 020-94, MSRI, Berkley, 1994 | MR

[9] K. Fukaya, Y-G. Oh, H. Ohta, K. Ono, Lagrangian intersection Floer theory – anomaly and obstruction, Preprint http://www.kusm.kyoto-u.ac.jp/~fukaya/fukaya.html

[10] K. Gawȩdzki, “Lectures On conformal field theory”, Quantum Fields and Strings: A Course for Mathematicians, vol. 1, 2 (Princeton, NJ, 1996/1997), Amer. Math. Soc., Providence, RI, 1999, 727–805 | MR | Zbl

[11] I. M. Gelfand, I. Ya. Dorfman, “Skobka Skhoutena i gamiltonovy operatory”, Funkts. analiz i ego pril., 14:3 (1980), 71–74 | MR | Zbl

[12] S. I. Gelfand, Yu. I. Manin, Metody gomologicheskoi algebry. T. 1. Vvedenie v teoriyu kogomologii i proizvodnye kategorii, Nauka, M., 1988 | MR

[13] V. Golyshev, V. Lunts, D. Orlov, “Mirror symmetry for abelian varieties”, J. Algebraic Geom., 10:3 (2001), 433–496 | MR | Zbl

[14] B. R. Greene, M. R. Plesser, “Duality in Calabi–Yau moduli space”, Nuclear Phys. B, 338:1 (1990), 15–37 | DOI | MR

[15] R. Hartshorne, Residues and Duality, Lecture Notes in Math., 20, Springer-Verlag, Berlin, 1966 | MR | Zbl

[16] R. T. Hoobler, “Brauer groups of abelian schemes”, Ann. Sci. École Norm. Sup. (4), 5 (1972), 45–70 | MR | Zbl

[17] K. Hori, S. Katz, A. Klemm, R. Pandharipande, R. Thomas, C. Vafa, R. Vakil, E. Zaslow, Mirror Symmetry, Clay Math. Monogr., 1, Amer. Math. Soc. / Clay Mathematics Inst., Providence, RI / Cambridge, MA, 2003 | MR | Zbl

[18] A. Kapustin, “Topological strings on noncommutative manifolds”, Int. J. Geom. Methods Mod. Phys., 1:1–2 (2004), 49–81 | DOI | MR | Zbl

[19] A. Kapustin, D. Orlov, “Vertex algebras, mirror symmetry, and D-branes: The case of complex tori”, Comm. Math. Phys., 233:1 (2003), 79–136 | DOI | MR | Zbl

[20] A. Kapustin, D. Orlov, “Remarks on A-branes, mirror symmetry, and the Fukaya category”, J. Geom. Phys., 48:1 (2003), 84–99 | DOI | MR | Zbl

[21] M. Kasivara, P. Shapira, Puchki na mnogoobraziyakh, Mir, M., 1997

[22] S. Katz, E. Sharpe, “D-branes, open string vertex operators, and Ext groups”, Adv. Theor. Math. Phys., 6:6 (2002), 979–1030 | MR

[23] B. Keller, “Derived categories and their uses”, Handbook of Algebra, vol. 1, ed. M. Hazewinkel, North-Holland, Amsterdam, 1996, 671–701 | MR | Zbl

[24] B. Keller, “Introduction to $A_\infty$-infinity algebras and modules”, Homology Homotopy Appl., 3:1 (2001), 1–35 (electronic) | MR

[25] M. Kontsevich, “Homological algebra of mirror symmetry”, Proceedings of International Congress of Mathematicians (Zurich, 1994), Birkhäuser, Basel, 1995, 120–139 | MR | Zbl

[26] M. Kontsevich, Y. Soibelman, “Homological mirror symmetry and torus fibrations”, Symplectic Geometry and Mirror Symmetry (Seoul, 2000), World Scientific, River Edge, NJ, 2001, 203–263 | MR | Zbl

[27] C. I. Lazaroiu, “On the structure of open-closed topological field theory in two dimensions”, Nuclear Phys. B, 603:3 (2001), 497–530 | DOI | MR | Zbl

[28] C. I. Lazaroiu, “Unitarity, D-brane dynamics and D-brane categories”, J. High Energy Phys., 2001, no. 12, paper 31 | MR

[29] W. Lerche, C. Vafa, N. P. Warner, “Chiral rings in $N=2$ superconformal theories”, Nuclear Phys. B, 324:2 (1989), 427–474 | DOI | MR

[30] Y. Li, Anomalies and graded coisotropic branes, arXiv:hep-th/0405280 | MR

[31] G. Moore, “D-branes, RR-fields and K-theory”, The Duality Workshop, 2001; http://online.itp.ucsb.edu/online/mp01

[32] S. Mukai, “Duality between $D(X)$ and $D(\widehat X)$ with its application to Picard sheaves”, Nagoya Math. J., 81 (1981), 153–175 | MR | Zbl

[33] D. O. Orlov, “Equivalences of derived categories and $K$3 surfaces”, J. Math. Sci. (New York), 84:5 (1997), 1361–1381 | DOI | MR | Zbl

[34] D. O. Orlov, “Proizvodnye kategorii kogerentnykh puchkov na abelevykh mnogoobraziyakh i ekvivalentnosti mezhdu nimi”, Izv. RAN. Ser. matem., 66:3 (2002), 131–158 | MR | Zbl

[35] D. O. Orlov, “Proizvodnye kategorii kogerentnykh puchkov i ekvivalentnosti mezhdu nimi”, UMN, 58:3 (2003), 89–172 | MR | Zbl

[36] J. Polchinski, String Theory. V. 2: Superstring Theory and Beyond, Cambridge Univ. Press, Cambridge, 1998

[37] J. Polchinski, “Dirichlet-branes and Ramond–Ramond charges”, Phys. Rev. Lett., 75:26 (1995), 4724–4727 | DOI | MR | Zbl

[38] A. Polishchuk, “Symplectic biextensions and generalization of the Fourier–Mukai transforms”, Math. Res. Lett., 3:6 (1996), 813–828 | MR | Zbl

[39] A. Polishchuk, E. Zaslow, “Categorical mirror symmetry: The elliptic curve”, Adv. Theor. Math. Phys., 2:2 (1998), 443–470 | MR | Zbl

[40] G. B. Segal, “The definition of conformal field theory”, Differential Geometrical Methods in Theoretical Physics (Como, 1987), NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci., 250, Kluwer, Dordrecht, 1988, 165–171 | MR

[41] A. Strominger, S. T. Yau, E. Zaslow, “Mirror symmetry is $T$-duality”, Nuclear Phys. B., 479:1–2 (1996), 243–259 | DOI | MR | Zbl

[42] R. G. Swan, “Hochschild cohomology of quasiprojective schemes”, J. Pure Appl. Algebra., 110:1 (1996), 57–80 | DOI | MR | Zbl

[43] J. L. Verdier, “Catégories dérivées”, Cohomologie Étale. Séminaire de Géométrie Algébrique du Bois-Marie SGA $4\frac12$, Lecture Notes in Math., 569, Springer-Verlag, Berlin, 1977, 262–311 | MR

[44] E. Witten, “Phases of $N=2$ theories in two dimensions”, Nucl. Phys. B, 403:1–2 (1993), 159–222 | DOI | MR | Zbl

[45] E. Witten, “Topological sigma models”, Comm. Math. Phys., 118:3 (1988), 411–449 | DOI | MR | Zbl

[46] E. Witten, “Mirror manifolds and topological field theory”, Essays on Mirror Manifolds, Internat. Press, Hong Kong, 1992, 120–158 | MR

[47] E. Witten, “Chern–Simons gauge theory as a string theory”, The Floer Memorial Volume, Progr. Math., 133, Birkhaüser, Basel, 1995, 637–678 | MR