@article{RM_2004_59_4_a3,
author = {M. Schlichenmaier and O. K. Sheinman},
title = {Knizhnik{\textendash}Zamolodchikov equations for positive genus and {Krichever{\textendash}Novikov} algebras},
journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
pages = {737--770},
year = {2004},
volume = {59},
number = {4},
language = {en},
url = {http://geodesic.mathdoc.fr/item/RM_2004_59_4_a3/}
}
TY - JOUR AU - M. Schlichenmaier AU - O. K. Sheinman TI - Knizhnik–Zamolodchikov equations for positive genus and Krichever–Novikov algebras JO - Trudy Matematicheskogo Instituta imeni V.A. Steklova PY - 2004 SP - 737 EP - 770 VL - 59 IS - 4 UR - http://geodesic.mathdoc.fr/item/RM_2004_59_4_a3/ LA - en ID - RM_2004_59_4_a3 ER -
%0 Journal Article %A M. Schlichenmaier %A O. K. Sheinman %T Knizhnik–Zamolodchikov equations for positive genus and Krichever–Novikov algebras %J Trudy Matematicheskogo Instituta imeni V.A. Steklova %D 2004 %P 737-770 %V 59 %N 4 %U http://geodesic.mathdoc.fr/item/RM_2004_59_4_a3/ %G en %F RM_2004_59_4_a3
M. Schlichenmaier; O. K. Sheinman. Knizhnik–Zamolodchikov equations for positive genus and Krichever–Novikov algebras. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 59 (2004) no. 4, pp. 737-770. http://geodesic.mathdoc.fr/item/RM_2004_59_4_a3/
[1] D. Bernard, “On the Wess–Zumino–Witten models on Riemann surfaces”, Nuclear Phys. B, 309:1 (1988), 145–174 | DOI | MR
[2] L. Bonora, M. Rinaldi, J. Russo, K. Wu, “The Sugawara construction on genus-$g$ Riemann surfaces”, Phys. Lett. B, 208:3–4 (1988), 440–446 | DOI | MR
[3] B. Enriquez, G. Felder, Solutions of the KZB equations in genus $\ge1$, arXiv: math/9912198
[4] G. Felder, Ch. Wieczerkowski, “Conformal blocks on elliptic curves and the Knizhnik–Zamolodchikov–Bernard equations”, Comm. Math. Phys., 176:1 (1996), 133–161 | DOI | MR | Zbl
[5] J. Harris, I. Morrison, Moduli of Curves, Springer-Verlag, New York, 1998 | MR
[6] N. J. Hitchin, “Flat connections and geometric quantization”, Comm. Math. Phys., 131:2 (1990), 347–380 | DOI | MR | Zbl
[7] V. Kats, Beskonechnomernye algebry Li, Mir, M., 1993 | MR | Zbl
[8] V. G. Kac, A. K. Raina, Bombay Lectures on Highest Weight Representations of Infinite-Dimensional Lie Algebras, World Scientific, Teaneck, 1987 | MR
[9] V. G. Knizhnik, A. B. Zamolodchikov, “Current algebra and Wess–Zumino model in two dimensions”, Nuclear Phys. B, 247:1 (1984), 83–103 | DOI | MR | Zbl
[10] I. M. Krichever, S. P. Novikov, “Algebry tipa Virasoro, rimanovy poverkhnosti i struktury teorii solitonov”, Funkts. analiz i ego pril., 21:2 (1987), 46–63 | MR | Zbl
[11] I. M. Krichever, S. P. Novikov, “Algebry tipa Virasoro, rimanovy poverkhnosti i struny v prostranstve Minkovskogo”, Funkts. analiz i ego pril., 21:4 (1987), 47–61 | MR | Zbl
[12] I. M. Krichever, S. P. Novikov, “Algebry tipa Virasoro, tenzor energii-impulsa i operatornye razlozheniya na rimanovykh poverkhnostyakh”, Funkts. analiz i ego pril., 23:1 (1989), 24–40 | MR | Zbl
[13] I. M. Krichever, S. P. Novikov, “Golomorfnye rassloeniya i kommutiruyuschie raznostnye operatory. Dvukhtochechnye konstruktsii”, UMN, 55:3 (2000), 181–182 | MR | Zbl
[14] A. Ruffing, T. Deck, M. Schlichenmaier, “String branchings on complex tori and algebraic representations of generalized Krichever–Novikov algebras”, Lett. Math. Phys., 26:1 (1992), 23–32 | DOI | MR | Zbl
[15] V. A. Sadov, “Bases on multipunctured Riemann surfaces and interacting strings amplitudes”, Comm. Math. Phys., 136:3 (1991), 585–597 | DOI | MR | Zbl
[16] M. Schlichenmaier, An Introduction to Riemann Surfaces, Algebraic Curves and Moduli Spaces, Lecture Notes in Phys., 322, Springer-Verlag, Berlin, 1989 | MR | Zbl
[17] M. Schlichenmaier, “Krichever–Novikov algebras for more than two points”, Lett. Math. Phys., 19:2 (1990), 151–165 | DOI | MR | Zbl
[18] M. Schlichenmaier, “Krichever–Novikov algebras for more than two points: explicit generators”, Lett. Math. Phys., 19:4 (1990), 327–336 | DOI | MR | Zbl
[19] M. Schlichenmaier, “Central extensions and semi-infinite wedge representations of Krichever–Novikov algebras for more than two points”, Lett. Math. Phys., 20:1 (1990), 33–46 | DOI | MR | Zbl
[20] M. Schlichenmaier, Verallgemeinerte Krichever–Novikov Algebren und deren Darstellungen, Ph.D. Thesis, Universität Mannheim, Mannheim, 1990
[21] M. Schlichenmaier, “Degenerations of generalized Krichever–Novikov algebras on tori”, J. Math. Phys., 34:8 (1993), 3809–3824 | DOI | MR | Zbl
[22] M. Schlichenmaier, “Differential operator algebras on compact Riemann surfaces”, Generalized Symmetries in Physics (Clausthal, Germany, 1993), eds. H.-D. Doebner, V. K. Dobrev, A. G. Ushveridze, World Scientific, River Edge, 1994, 425–434 | MR
[23] M. Schlichenmaier, “Local cocycles and central extensions for multipoint algebras of Krichever–Novikov type”, J. Reine Angew. Math., 559 (2003), 53–94 | MR | Zbl
[24] M. Schlichenmaier, “Higher genus affine algebras of Krichever–Novikov type”, Mosc. Math. J. (to appear) | MR
[25] M. Schlichenmaier, O. K. Sheinman, “The Sugawara construction and Casimir operators for Krichever–Novikov algebras”, J. Math. Sci. (New York), 92:2 (1998), 3807–3834 ; arXiv: q-alg/9512016 | DOI | MR | Zbl
[26] M. Shlikhenmaier, O. K. Sheinman, “Teoriya Vessa–Zumino–Vittena–Novikova, uravneniya Knizhnika–Zamolodchikova i algebry Krichevera–Novikova”, UMN, 54:1 (1999), 213–249 | MR
[27] O. K. Sheinman, “Ellipticheskie affinnye algebry Li”, Funkts. analiz i ego pril., 24:3 (1990), 51–61 | MR
[28] O. K. Sheinman, “Affinnye algebry Li na rimanovykh poverkhnostyakh”, Funkts. analiz i ego pril., 27:4 (1993), 54–62 | MR | Zbl
[29] O. K. Sheinman, “Representations of Krichever–Novikov algebras”, Topics in Topology and Mathematical Physics, ed. S. P. Novikov, Amer. Math. Soc., Providence, RI, 1995, 185–197 | MR | Zbl
[30] O. K. Sheinman, “Fermionnaya model predstavlenii affinnykh algebr Krichevera–Novikova”, Funkts. analiz i ego pril., 35:3 (2001), 60–72 | MR | Zbl
[31] O. K. Sheinman, “Second order Casimirs for the affine Krichever–Novikov algebras $\widehat{\mathfrak{gl}}_{g,2}$ and $\widehat{\mathfrak{sl}}_{g,2}$”, Mosc. Math. J., 1:4 (2001), 605–628 ; arXiv: math/0109001 | MR | Zbl
[32] O. K. Sheinman, “Kazimiry vtorogo poryadka dlya affinnykh algebr Krichevera–Novikova $\widehat{\mathfrak{{{gl}}}_{g,2}}$ i $\widehat{\mathfrak{{{sl}}}_{g,2}}$”, UMN, 56:5 (2001), 189–190 | MR | Zbl
[33] O. K. Sheinman, Krichever–Novikov algebras, their representations and applications, arXiv: math/0304020 | MR
[34] A. Tsuchiya, K. Ueno, Y. Yamada, “Conformal field theory on universal family of stable curves with gauge symmetries”, Adv. Stud. Pure Math., 19 (1989), 459–566 | MR | Zbl
[35] K. Ueno, “Introduction to conformal field theory with gauge symmetries”, Geometry and Physics (Aarhus, 1995), eds. J. E. Andersen et al., Dekker, New York, 1997, 603–745 | MR | Zbl