On solvability and unsolvability of equations in explicit form
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 59 (2004) no. 4, pp. 661-736 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In this survey the classical results of Abel, Liouville, Galois, Picard, Vessiot, Kolchin, and others on the solvability and unsolvability of equations in explicit form are discussed. The one-dimensional topological version of Galois theory is presented in detail (this version describes topological obstructions to the representability of functions by quadratures).
@article{RM_2004_59_4_a2,
     author = {A. G. Khovanskii},
     title = {On solvability and unsolvability of equations in explicit form},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {661--736},
     year = {2004},
     volume = {59},
     number = {4},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/RM_2004_59_4_a2/}
}
TY  - JOUR
AU  - A. G. Khovanskii
TI  - On solvability and unsolvability of equations in explicit form
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2004
SP  - 661
EP  - 736
VL  - 59
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/RM_2004_59_4_a2/
LA  - en
ID  - RM_2004_59_4_a2
ER  - 
%0 Journal Article
%A A. G. Khovanskii
%T On solvability and unsolvability of equations in explicit form
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2004
%P 661-736
%V 59
%N 4
%U http://geodesic.mathdoc.fr/item/RM_2004_59_4_a2/
%G en
%F RM_2004_59_4_a2
A. G. Khovanskii. On solvability and unsolvability of equations in explicit form. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 59 (2004) no. 4, pp. 661-736. http://geodesic.mathdoc.fr/item/RM_2004_59_4_a2/

[1] V. B. Alekseev, Teorema Abelya v zadachakh i resheniyakh, Izd-vo MTsNMO, M., 2001 | MR

[2] V. I. Arnold, “Algebraicheskaya nerazreshimost problemy ustoichivosti po Lyapunovu i problemy topologicheskoi klassifikatsii osobykh tochek analiticheskoi sistemy differentsialnykh uravnenii”, Funkts. analiz i ego pril., 4:3 (1970), 1–9 | MR

[3] V. I. Arnold, “Superpozitsii”, A. N. Kolmogorov. Izbrannye trudy. Matematika i mekhanika, Nauka, M., 1985, 444–451 | MR

[4] V. I. Arnold, “Topologicheskoe dokazatelstvo transtsendentnosti abelevykh integralov v “Matematicheskikh nachalakh naturalnoi filosofii” Nyutona”, Istoriko-matematicheskie issledovaniya, 1989, no. 31, 7–17 | MR | Zbl

[5] V. I. Arnol'd, “Problèmes résolubles et problèmes irrésolubles analytiques et géométriques”, Passion des Formes. Dynamique Qualitative Sémiophysique et Intelligibilité, Dédié à R. Thom, ENS Éditions, Fontenay–St Cloud, 1994, 411–417

[6] V. I. Arnol'd, “Sur quelques problèmes de la théorie des systèmes dynamiques”, Topol. Methods Nonlinear Anal., 4:2 (1994), 209–225 | MR | Zbl

[7] V. I. Arnold, “I. G. Petrovskii, topologicheskie problemy Gilberta i sovremennaya matematika”, UMN, 57:4 (2002), 197–207 | MR | Zbl

[8] V. I. Arnold, O. A. Oleinik, “Topologiya deistvitelnykh algebraicheskikh mnogoobrazii”, Vestnik MGU. Ser. 1. Matem., mekh., 6 (1979), 7–17 | MR | Zbl

[9] V. I. Arnol'd, V. A. Vassill'ev, “Newton's Principia read 300 years later”, Notices Amer. Math. Soc., 36:9 (1989), 1148–1154. ; Addendum: ibid. 37:2 (1990), 144 | MR | MR

[10] A. A. Bolibrukh, “Obratnye zadachi monodromii analiticheskoi teorii differentsialnykh uravnenii”, Matematicheskie sobytiya XX veka, Fazis, M., 2003, 53–79

[11] A. A. Bolibrukh, Fuksovy differentsialnye uravneniya i golomorfnye rassloeniya, Izd-vo MTsNMO, M., 2000

[12] D. B. Fuks, A. T. Fomenko, V. L. Gutenmakher, Gomotopicheskaya topologiya, Izd-vo Mosk. un-ta, M., 1969

[13] V. V. Golubev, Lektsii po analiticheskoi teorii differentsialnykh uravnenii, Gostekhizdat, M.–L., 1950 | MR

[14] A. Gurvits, R. Kurant, Teoriya funktsii, Nauka, M., 1968 | MR

[15] Yu. S. Ilyashenko, A. G. Khovanskii, Teoriya Galua sistem differentsialnykh uravnenii tipa Fuksa s malymi koeffitsientami, Preprint IPM AN SSSR No 117, M., 1974

[16] E. L. Ains, Obyknovennye differentsialnye uravneniya, Gos. nauchno-tekhn. izd-vo, Kharkov, 1939

[17] I. Kaplanskii, Vvedenie v differentsialnuyu algebru, Mir, M., 1959

[18] A. G. Khovanskii, “O predstavimosti algebroidnykh funktsii superpozitsiyami analiticheskikh funktsii i algebroidnykh funktsii odnoi peremennoi”, Funkts. analiz i ego pril., 4:2 (1970), 74–79 | MR

[19] A. G. Khovanskii, “O superpozitsiyakh golomorfnykh funktsii s radikalami”, UMN, 26:2 (1971), 213–214 | MR | Zbl

[20] A. G. Khovanskii, “O predstavimosti funktsii v kvadraturakh”, UMN, 26:4 (1971), 251–252 | MR

[21] A. G. Khovanskii, O predstavimosti funktsii v kvadraturakh, Diss. ... kand. fiz.-matem. nauk, MIAN, M., 1973

[22] A. Khovanskij, “Topological obstructions for representability of functions by quadratures”, J. Dynam. Control Systems, 1:1 (1995), 91–123 | DOI | MR

[23] A. G. Khovanskii, “O prodolzhaemosti mnogoznachnykh analiticheskikh funktsii na analiticheskoe podmnozhestvo”, Funkts. analiz i ego pril., 35:1 (2001), 62–73 | MR | Zbl

[24] A. G. Khovanskii, “O monodromii mnogoznachnoi funktsii na ee mnozhestve vetvleniya”, Funkts. analiz i ego pril., 37:2 (2003), 65–74 | MR

[25] A. G. Khovanskii, “Mnogomernye rezultaty o nepredstavimosti funktsii v kvadraturakh”, Funkts. analiz i ego pril., 37:4 (2003), 74–85 | MR | Zbl

[26] E. R. Kolchin, “Algebraic matric groups and the Picard–Vessiot theory of homogeneous linear ordinary differential equations”, Ann. of Math. (2), 49 (1948), 1–42 | DOI | MR | Zbl

[27] E. R. Kolchin, “Galois theory of differential fields”, Amer. J. Math., 75 (1953), 753–824 | DOI | MR | Zbl

[28] A. G. Kurosh, Lektsii po obschei algebre, Fizmatgiz, M., 1962

[29] I. A. Lappo-Danilevskii, Primenenie funktsii ot matrits k teorii lineinykh sistem obyknovennykh differentsialnykh uravnenii, GITTL, M., 1957 | MR

[30] J. Liouville, “Sur la détermination des intégrales dont la valeur est algébrique”, J. Ecole Polytech. Paris, 14 (1833), 124–193

[31] J. Liouville, “Mémoire sur l'intégration d'une classe de fonctions transcendentes”, J. Reine Angew. Math., 13:2 (1835), 93–118 | Zbl

[32] J. Liouville, “Mémoire sur l'intégration d'une classe d'équations différentielles du second ordre en quantités finies explicites”, J. Math. Pures Appl. Sér. I, 4 (1839), 423–456

[33] J. F. Ritt, Integration in Finite Terms. Liouville's Theory of Elementary Methods, Columbia Univ. Press, New York, 1948 | MR | Zbl

[34] M. Rosenlicht, “Liouville's theorem on functions with elementary integrals”, Pacific J. Math., 24 (1968), 153–161 | MR | Zbl

[35] M. Rosenlicht, “On Liouville's theory of elementary functions”, Pacific J. Math., 65:2 (1976), 485–492 | MR | Zbl

[36] M. F. Singer, “Formal solutions of differential equations”, J. Symbolic Comput., 10:1 (1990), 59–94 | DOI | MR | Zbl

[37] M. F. Singer, “Liouvillian solutions of $n$th order homogeneous linear differential equations”, Amer. J. Math., 103:4 (1981), 661–682 | DOI | MR | Zbl