Groups of homeomorphisms of the line and the circle.
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 59 (2004) no. 4, pp. 599-660 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

This survey is devoted to investigations concerning topological, algebraic, and combinatorial characteristics as well as metric invariants for arbitrary groups of homeomorphisms of the line and the circle. Relationships between these characteristics are established, the most important metric invariants are studied (in the form of invariant, projectively invariant, and $\omega$-projectively invariant measures), and the main ‘obstructions’ to the existence of metric invariants of this kind are described.
@article{RM_2004_59_4_a1,
     author = {L. A. Beklaryan},
     title = {Groups of homeomorphisms of the line and the circle.},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {599--660},
     year = {2004},
     volume = {59},
     number = {4},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/RM_2004_59_4_a1/}
}
TY  - JOUR
AU  - L. A. Beklaryan
TI  - Groups of homeomorphisms of the line and the circle.
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2004
SP  - 599
EP  - 660
VL  - 59
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/RM_2004_59_4_a1/
LA  - en
ID  - RM_2004_59_4_a1
ER  - 
%0 Journal Article
%A L. A. Beklaryan
%T Groups of homeomorphisms of the line and the circle.
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2004
%P 599-660
%V 59
%N 4
%U http://geodesic.mathdoc.fr/item/RM_2004_59_4_a1/
%G en
%F RM_2004_59_4_a1
L. A. Beklaryan. Groups of homeomorphisms of the line and the circle.. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 59 (2004) no. 4, pp. 599-660. http://geodesic.mathdoc.fr/item/RM_2004_59_4_a1/

[1] L. V. Alfors, Lektsii po kvazikonformnym otobrazheniyam, Mir, M., 1969 | MR

[2] D. V. Anosov, “O vklade N. N. Bogolyubova v teoriyu dinamicheskikh sistem”, UMN, 49:5 (1994), 5–20 | MR | Zbl

[3] A. Antonevich, A. Lebedev, Functional-differential Equations. I. $C^*$-theory, Longman, Harlow, 1994 | MR | Zbl

[4] V. I. Arnold, “Malye znamenateli. I. Ob otobrazheniyakh okruzhnosti na sebya”, Izv. AN SSSR. Ser. matem., 25:1 (1961), 21–86 | MR | Zbl

[5] V. I. Arnold, Dopolnitelnye glavy teorii obyknovennykh differentsialnykh uravnenii, Nauka, M., 1978 | MR

[6] L. A. Beklaryan, “O privodimosti differentsialnykh uravnenii s otklonyayuschimsya argumentom k uravneniyu s postoyannymi soizmerimymi otkloneniyami”, Matem. zametki, 44:5 (1988), 561–565 | MR

[7] L. A. Beklaryan, “Ob odnom metode regulyarizatsii kraevykh zadach dlya differentsialnykh uravnenii s otklonyayuschimsya argumentom”, Dokl. AN SSSR, 317:5 (1991), 1033–1037 | MR

[8] L. A. Beklaryan, “Zadacha optimalnogo upravleniya dlya sistem s otklonyayuschimsya argumentom i ee svyaz s konechno-porozhdennoi gruppoi gomeomorfizmov $\mathbb R$, porozhdennoi funktsiyami otkloneniya”, Dokl. AN SSSR, 317:6 (1991), 1289–1294 | MR | Zbl

[9] L. A. Beklaryan, “K voprosu o klassifikatsii grupp gomeomorfizmov $\mathbb R$, sokhranyayuschikh orientatsiyu. I. Invariantnye mery.”, Matem. sb., 187:3 (1996), 23–54 | MR | Zbl

[10] L. A. Beklaryan, “K voprosu o klassifikatsii grupp gomeomorfizmov $\mathbb R$, sokhranyayuschikh orientatsiyu. II. Proektivno-invariantnye mery”, Matem. sb., 187:4 (1996), 3–28 | MR | Zbl

[11] L. A. Beklaryan, “K voprosu o klassifikatsii grupp gomeomorfizmov $\mathbb R$, sokhranyayuschikh orientatsiyu. III. $\omega$-proektivno-invariantnye mery”, Matem. sb., 190:4 (1999), 43–62 | MR | Zbl

[12] L. A. Beklaryan, “Gruppovye osobennosti differentsialnykh uravnenii s otklonyayuschimsya argumentom i svyazannye s nimi metricheskie invarianty”, Itogi nauki i tekhniki. Sovr. matem. i ee pril. Tematicheskie obzory, 67, 1999, 161–182 | Zbl

[13] L. A. Beklaryan, “Kriterii suschestvovaniya proektivno-invariantnoi mery dlya grupp gomeomorfizmov $\mathbb R$, sokhranyayuschikh orientatsiyu, svyazannyi so strukturoi mnozhestva nepodvizhnykh tochek”, UMN, 51:3 (1996), 179–180 | MR | Zbl

[14] L. A. Beklaryan, “O kriterii topologicheskoi sopryazhennosti kvazisimmetricheskoi gruppy gruppe affinnykh preobrazovanii $\mathbb R$”, Matem. sb., 191:6 (2000), 31–42 | MR | Zbl

[15] L. A. Beklaryan, “About canonical types of the differential equations with deviating argument”, Funct. Differential Equations, 8:1–2 (2001), 25–33 | MR | Zbl

[16] L. A. Beklaryan, “Ob analogakh alternativy Titsa dlya grupp gomeomorfizmov okruzhnosti i pryamoi”, Matem. zametki, 71:3 (2002), 334–347 | MR | Zbl

[17] P. de lya Arp, R. I. Grigorchuk, T. Chekerini-Silberstain, “Amenabelnost i paradoksalnye razbieniya dlya psevdogrupp i diskretnykh metricheskikh prostranstv”, Trudy MIAN, 224 (1999), 68–111

[18] É. Ghys, “Groupes d'homéomorphismes du cercle et cohomologie bornée”, Contemp. Math., 58 (1987), 81–106 | MR | Zbl

[19] É. Ghys, “Groups acting on the circle”, Enseign. Math. (2), 47:3–4 (2001), 329–407 | MR | Zbl

[20] F. Grinlif, Invariantnye srednie na topologicheskikh gruppakh i ikh prilozheniya, Mir, M., 1973

[21] R. I. Grigorchuk, “Some results on bounded cohomology”, London Math. Soc. Lecture Note Ser., 204 (1995), 111–163 | MR | Zbl

[22] R. I. Grigorchuk, P. F. Kurchanov, “Nekotorye voprosy teorii grupp, svyazannye s geometriei”, Itogi nauki i tekhniki. Sovr. probl. matem. Fundam. napr., 58, 1990, 191–256 | MR

[23] G. Hector, U. Hirsch, Introduction to the Geometry of Foliations. Part B. Foliations of Codimension One, Vieweg, Braunschweig, 1983 | MR | Zbl

[24] A. Hinkkanen, The structure of certain quasisymmetric groups, Mem. Amer. Math. Soc., 83, no. 422, 1990 | MR

[25] H. Imanishi, “Structure of codimension 1 foliations without holonomy on manifolds with abelian fundamental group”, J. Math. Kyoto Univ., 19:3 (1979), 481–495 | MR | Zbl

[26] Yu. I. Karlovich, “$C$-algebra operatorov tipa svertki s diskretnymi gruppami sdvigov i ostsilliruyuschimi koeffitsientami”, Dokl. AN SSSR, 302:3 (1988), 535–540 | MR

[27] I. P. Kornfeld, Ya. G. Sinai, S. V. Fomin, Ergodicheskaya teoriya, Nauka, M., 1980 | MR | Zbl

[28] G. Margulis, “Free subgroups of the homeomorphism group of the circle”, C. R. Acad. Sci. Paris Sér. I Math., 331:9 (2000), 669–674 | MR | Zbl

[29] S. Matsumoto, “Numerical invariants for semiconjugacy of homeomorphisms of the circle”, Proc. Amer. Math. Soc., 98:1 (1986), 163–168 | DOI | MR | Zbl

[30] S. Matsumoto, “Some remarks on foliated $S^1$ bundles”, Invent. Math., 90:2 (1987), 343–358 | DOI | MR | Zbl

[31] S. P. Novikov, “Topologiya sloenii”, Trudy MMO, 14 (1965), 248–278 | MR | Zbl

[32] J. F. Plante, “Foliations with measure preserving holonomy”, Ann. of Math. (2), 102:2 (1975), 327–361 | DOI | MR | Zbl

[33] J. F. Plante, “Solvable groups acting on the line”, Transl. Amer. Math. Soc., 278:1 (1983), 401–414 | DOI | MR | Zbl

[34] A. Puankare, Izbrannye trudy, t. I, II, Nauka, M., 1992

[35] E. Salhi, “Sur les ensembles minimaux locaux”, C. R. Acad. Sci. Paris. Sér. I Math., 295:12 (1982), 691–694 | MR | Zbl

[36] E. Salhi, “Sur un théorème de structure de feuilletages de codimension 1”, C. R. Acad. Sci. Paris. Sér. I Math., 300:18 (1985), 635–638 | MR | Zbl

[37] E. Salhi, “Niveau des feuilles”, C. R. Acad. Sci. Paris. Sér. I Math., 301:5 (1985), 219–222 | MR | Zbl

[38] Ya. G. Sinai, Vvedenie v ergodicheskuyu teoriyu, Fazis, M., 1996

[39] V. V. Solodov, “Gomeomorfizmy pryamoi i sloeniya”, Izv. AN SSSR. Ser. matem., 46:5 (1982), 1047–1060 | MR

[40] V. V. Solodov, “Gomeomorfizmy okruzhnosti i sloeniya”, Izv. AN SSSR. Ser. matem., 48:3 (1984), 599–613 | MR | Zbl

[41] V. V. Solodov, “Topologicheskie problemy v teorii dinamicheskikh sistem”, UMN, 46:4 (1991), 93–114 | MR

[42] A. I. Kokorin, V. M. Kopytov, Lineino uporyadochennye gruppy, Mir, M., 1972 | MR

[43] A. G. Kurosh, Lektsii po obschei algebre, Nauka, M., 1973 | Zbl

[44] A. Banyaga, The Structure of Classical Diffeomorphism Groups, Math. Appl., 400, Kluwer, Dordrecht, 1997 | MR | Zbl

[45] M. G. Brin, “The chameleon groups of Richard J. Thompson: automorphisms and dynamics”, Inst. Hautes Études Sci. Publ. Math., 84 (1996), 5–33 | DOI | MR | Zbl

[46] M. G. Brin, M. Guzmán, “Automorphisms of generalized Thompson groups”, J. Algebra, 203:1 (1998), 285–348 | DOI | MR | Zbl

[47] J. W. Cannon, W. J. Floyd, W. R. Parry, “Introductory notes on Richard Thompson's groups”, Enseign. Math. (2), 42:3–4 (1996), 215–256 | MR | Zbl

[48] D. B. A. Epstein, K. Fujiwara, “The second bounded cohomology of word-hyperbolic groups”, Topology, 36:6 (1997), 1275–1289 | DOI | MR | Zbl

[49] N. Kovačevic, “Möbius-like groups of homeomorphisms of the circle”, Trans. Amer. Math. Soc., 351:12 (1999), 4791–4822 | DOI | MR | Zbl

[50] M. Stein, “Groups of piecewise linear homeomorphisms”, Trans. Amer. Math. Soc., 332:2 (1992), 477–514 | DOI | MR | Zbl

[51] J. Tits, “Free subgroups in linear groups”, J. Algebra, 20 (1972), 250–270 | DOI | MR | Zbl

[52] L. Alfors, Preobrazovaniya Mëbiusa v mnogomernom prostranstve, Mir, M., 1986 | MR

[53] A. P. Robertson, V. Dzh. Robertson, Topologicheskie vektornye prostranstva, Mir, M., 1967 | MR | Zbl