@article{RM_2004_59_4_a1,
author = {L. A. Beklaryan},
title = {Groups of homeomorphisms of the line and the circle.},
journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
pages = {599--660},
year = {2004},
volume = {59},
number = {4},
language = {en},
url = {http://geodesic.mathdoc.fr/item/RM_2004_59_4_a1/}
}
L. A. Beklaryan. Groups of homeomorphisms of the line and the circle.. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 59 (2004) no. 4, pp. 599-660. http://geodesic.mathdoc.fr/item/RM_2004_59_4_a1/
[1] L. V. Alfors, Lektsii po kvazikonformnym otobrazheniyam, Mir, M., 1969 | MR
[2] D. V. Anosov, “O vklade N. N. Bogolyubova v teoriyu dinamicheskikh sistem”, UMN, 49:5 (1994), 5–20 | MR | Zbl
[3] A. Antonevich, A. Lebedev, Functional-differential Equations. I. $C^*$-theory, Longman, Harlow, 1994 | MR | Zbl
[4] V. I. Arnold, “Malye znamenateli. I. Ob otobrazheniyakh okruzhnosti na sebya”, Izv. AN SSSR. Ser. matem., 25:1 (1961), 21–86 | MR | Zbl
[5] V. I. Arnold, Dopolnitelnye glavy teorii obyknovennykh differentsialnykh uravnenii, Nauka, M., 1978 | MR
[6] L. A. Beklaryan, “O privodimosti differentsialnykh uravnenii s otklonyayuschimsya argumentom k uravneniyu s postoyannymi soizmerimymi otkloneniyami”, Matem. zametki, 44:5 (1988), 561–565 | MR
[7] L. A. Beklaryan, “Ob odnom metode regulyarizatsii kraevykh zadach dlya differentsialnykh uravnenii s otklonyayuschimsya argumentom”, Dokl. AN SSSR, 317:5 (1991), 1033–1037 | MR
[8] L. A. Beklaryan, “Zadacha optimalnogo upravleniya dlya sistem s otklonyayuschimsya argumentom i ee svyaz s konechno-porozhdennoi gruppoi gomeomorfizmov $\mathbb R$, porozhdennoi funktsiyami otkloneniya”, Dokl. AN SSSR, 317:6 (1991), 1289–1294 | MR | Zbl
[9] L. A. Beklaryan, “K voprosu o klassifikatsii grupp gomeomorfizmov $\mathbb R$, sokhranyayuschikh orientatsiyu. I. Invariantnye mery.”, Matem. sb., 187:3 (1996), 23–54 | MR | Zbl
[10] L. A. Beklaryan, “K voprosu o klassifikatsii grupp gomeomorfizmov $\mathbb R$, sokhranyayuschikh orientatsiyu. II. Proektivno-invariantnye mery”, Matem. sb., 187:4 (1996), 3–28 | MR | Zbl
[11] L. A. Beklaryan, “K voprosu o klassifikatsii grupp gomeomorfizmov $\mathbb R$, sokhranyayuschikh orientatsiyu. III. $\omega$-proektivno-invariantnye mery”, Matem. sb., 190:4 (1999), 43–62 | MR | Zbl
[12] L. A. Beklaryan, “Gruppovye osobennosti differentsialnykh uravnenii s otklonyayuschimsya argumentom i svyazannye s nimi metricheskie invarianty”, Itogi nauki i tekhniki. Sovr. matem. i ee pril. Tematicheskie obzory, 67, 1999, 161–182 | Zbl
[13] L. A. Beklaryan, “Kriterii suschestvovaniya proektivno-invariantnoi mery dlya grupp gomeomorfizmov $\mathbb R$, sokhranyayuschikh orientatsiyu, svyazannyi so strukturoi mnozhestva nepodvizhnykh tochek”, UMN, 51:3 (1996), 179–180 | MR | Zbl
[14] L. A. Beklaryan, “O kriterii topologicheskoi sopryazhennosti kvazisimmetricheskoi gruppy gruppe affinnykh preobrazovanii $\mathbb R$”, Matem. sb., 191:6 (2000), 31–42 | MR | Zbl
[15] L. A. Beklaryan, “About canonical types of the differential equations with deviating argument”, Funct. Differential Equations, 8:1–2 (2001), 25–33 | MR | Zbl
[16] L. A. Beklaryan, “Ob analogakh alternativy Titsa dlya grupp gomeomorfizmov okruzhnosti i pryamoi”, Matem. zametki, 71:3 (2002), 334–347 | MR | Zbl
[17] P. de lya Arp, R. I. Grigorchuk, T. Chekerini-Silberstain, “Amenabelnost i paradoksalnye razbieniya dlya psevdogrupp i diskretnykh metricheskikh prostranstv”, Trudy MIAN, 224 (1999), 68–111
[18] É. Ghys, “Groupes d'homéomorphismes du cercle et cohomologie bornée”, Contemp. Math., 58 (1987), 81–106 | MR | Zbl
[19] É. Ghys, “Groups acting on the circle”, Enseign. Math. (2), 47:3–4 (2001), 329–407 | MR | Zbl
[20] F. Grinlif, Invariantnye srednie na topologicheskikh gruppakh i ikh prilozheniya, Mir, M., 1973
[21] R. I. Grigorchuk, “Some results on bounded cohomology”, London Math. Soc. Lecture Note Ser., 204 (1995), 111–163 | MR | Zbl
[22] R. I. Grigorchuk, P. F. Kurchanov, “Nekotorye voprosy teorii grupp, svyazannye s geometriei”, Itogi nauki i tekhniki. Sovr. probl. matem. Fundam. napr., 58, 1990, 191–256 | MR
[23] G. Hector, U. Hirsch, Introduction to the Geometry of Foliations. Part B. Foliations of Codimension One, Vieweg, Braunschweig, 1983 | MR | Zbl
[24] A. Hinkkanen, The structure of certain quasisymmetric groups, Mem. Amer. Math. Soc., 83, no. 422, 1990 | MR
[25] H. Imanishi, “Structure of codimension 1 foliations without holonomy on manifolds with abelian fundamental group”, J. Math. Kyoto Univ., 19:3 (1979), 481–495 | MR | Zbl
[26] Yu. I. Karlovich, “$C$-algebra operatorov tipa svertki s diskretnymi gruppami sdvigov i ostsilliruyuschimi koeffitsientami”, Dokl. AN SSSR, 302:3 (1988), 535–540 | MR
[27] I. P. Kornfeld, Ya. G. Sinai, S. V. Fomin, Ergodicheskaya teoriya, Nauka, M., 1980 | MR | Zbl
[28] G. Margulis, “Free subgroups of the homeomorphism group of the circle”, C. R. Acad. Sci. Paris Sér. I Math., 331:9 (2000), 669–674 | MR | Zbl
[29] S. Matsumoto, “Numerical invariants for semiconjugacy of homeomorphisms of the circle”, Proc. Amer. Math. Soc., 98:1 (1986), 163–168 | DOI | MR | Zbl
[30] S. Matsumoto, “Some remarks on foliated $S^1$ bundles”, Invent. Math., 90:2 (1987), 343–358 | DOI | MR | Zbl
[31] S. P. Novikov, “Topologiya sloenii”, Trudy MMO, 14 (1965), 248–278 | MR | Zbl
[32] J. F. Plante, “Foliations with measure preserving holonomy”, Ann. of Math. (2), 102:2 (1975), 327–361 | DOI | MR | Zbl
[33] J. F. Plante, “Solvable groups acting on the line”, Transl. Amer. Math. Soc., 278:1 (1983), 401–414 | DOI | MR | Zbl
[34] A. Puankare, Izbrannye trudy, t. I, II, Nauka, M., 1992
[35] E. Salhi, “Sur les ensembles minimaux locaux”, C. R. Acad. Sci. Paris. Sér. I Math., 295:12 (1982), 691–694 | MR | Zbl
[36] E. Salhi, “Sur un théorème de structure de feuilletages de codimension 1”, C. R. Acad. Sci. Paris. Sér. I Math., 300:18 (1985), 635–638 | MR | Zbl
[37] E. Salhi, “Niveau des feuilles”, C. R. Acad. Sci. Paris. Sér. I Math., 301:5 (1985), 219–222 | MR | Zbl
[38] Ya. G. Sinai, Vvedenie v ergodicheskuyu teoriyu, Fazis, M., 1996
[39] V. V. Solodov, “Gomeomorfizmy pryamoi i sloeniya”, Izv. AN SSSR. Ser. matem., 46:5 (1982), 1047–1060 | MR
[40] V. V. Solodov, “Gomeomorfizmy okruzhnosti i sloeniya”, Izv. AN SSSR. Ser. matem., 48:3 (1984), 599–613 | MR | Zbl
[41] V. V. Solodov, “Topologicheskie problemy v teorii dinamicheskikh sistem”, UMN, 46:4 (1991), 93–114 | MR
[42] A. I. Kokorin, V. M. Kopytov, Lineino uporyadochennye gruppy, Mir, M., 1972 | MR
[43] A. G. Kurosh, Lektsii po obschei algebre, Nauka, M., 1973 | Zbl
[44] A. Banyaga, The Structure of Classical Diffeomorphism Groups, Math. Appl., 400, Kluwer, Dordrecht, 1997 | MR | Zbl
[45] M. G. Brin, “The chameleon groups of Richard J. Thompson: automorphisms and dynamics”, Inst. Hautes Études Sci. Publ. Math., 84 (1996), 5–33 | DOI | MR | Zbl
[46] M. G. Brin, M. Guzmán, “Automorphisms of generalized Thompson groups”, J. Algebra, 203:1 (1998), 285–348 | DOI | MR | Zbl
[47] J. W. Cannon, W. J. Floyd, W. R. Parry, “Introductory notes on Richard Thompson's groups”, Enseign. Math. (2), 42:3–4 (1996), 215–256 | MR | Zbl
[48] D. B. A. Epstein, K. Fujiwara, “The second bounded cohomology of word-hyperbolic groups”, Topology, 36:6 (1997), 1275–1289 | DOI | MR | Zbl
[49] N. Kovačevic, “Möbius-like groups of homeomorphisms of the circle”, Trans. Amer. Math. Soc., 351:12 (1999), 4791–4822 | DOI | MR | Zbl
[50] M. Stein, “Groups of piecewise linear homeomorphisms”, Trans. Amer. Math. Soc., 332:2 (1992), 477–514 | DOI | MR | Zbl
[51] J. Tits, “Free subgroups in linear groups”, J. Algebra, 20 (1972), 250–270 | DOI | MR | Zbl
[52] L. Alfors, Preobrazovaniya Mëbiusa v mnogomernom prostranstve, Mir, M., 1986 | MR
[53] A. P. Robertson, V. Dzh. Robertson, Topologicheskie vektornye prostranstva, Mir, M., 1967 | MR | Zbl