Superdiffusions and positive solutions of non-linear partial differential equations
    
    
  
  
  
      
      
      
        
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 59 (2004) no. 1, pp. 147-157
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			By using super-Brownian motion, all positive solutions of the non-linear differential equation $\Delta u=u^\alpha$ with $1\alpha\leqslant 2$ in a bounded smooth domain $E$ are characterized by their (fine) traces on the boundary. This solves a problem posed by the author a few years ago. The special case $\alpha=2$ was treated by B. Mselati in 2002.
			
            
            
            
          
        
      @article{RM_2004_59_1_a9,
     author = {E. B. Dynkin},
     title = {Superdiffusions and positive solutions of non-linear partial differential equations},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {147--157},
     publisher = {mathdoc},
     volume = {59},
     number = {1},
     year = {2004},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/RM_2004_59_1_a9/}
}
                      
                      
                    TY - JOUR AU - E. B. Dynkin TI - Superdiffusions and positive solutions of non-linear partial differential equations JO - Trudy Matematicheskogo Instituta imeni V.A. Steklova PY - 2004 SP - 147 EP - 157 VL - 59 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/RM_2004_59_1_a9/ LA - en ID - RM_2004_59_1_a9 ER -
E. B. Dynkin. Superdiffusions and positive solutions of non-linear partial differential equations. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 59 (2004) no. 1, pp. 147-157. http://geodesic.mathdoc.fr/item/RM_2004_59_1_a9/