Superdiffusions and positive solutions of non-linear partial differential equations
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 59 (2004) no. 1, pp. 147-157

Voir la notice de l'article provenant de la source Math-Net.Ru

By using super-Brownian motion, all positive solutions of the non-linear differential equation $\Delta u=u^\alpha$ with $1\alpha\leqslant 2$ in a bounded smooth domain $E$ are characterized by their (fine) traces on the boundary. This solves a problem posed by the author a few years ago. The special case $\alpha=2$ was treated by B. Mselati in 2002.
@article{RM_2004_59_1_a9,
     author = {E. B. Dynkin},
     title = {Superdiffusions and positive solutions of non-linear partial differential equations},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {147--157},
     publisher = {mathdoc},
     volume = {59},
     number = {1},
     year = {2004},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/RM_2004_59_1_a9/}
}
TY  - JOUR
AU  - E. B. Dynkin
TI  - Superdiffusions and positive solutions of non-linear partial differential equations
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2004
SP  - 147
EP  - 157
VL  - 59
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/RM_2004_59_1_a9/
LA  - en
ID  - RM_2004_59_1_a9
ER  - 
%0 Journal Article
%A E. B. Dynkin
%T Superdiffusions and positive solutions of non-linear partial differential equations
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2004
%P 147-157
%V 59
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/RM_2004_59_1_a9/
%G en
%F RM_2004_59_1_a9
E. B. Dynkin. Superdiffusions and positive solutions of non-linear partial differential equations. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 59 (2004) no. 1, pp. 147-157. http://geodesic.mathdoc.fr/item/RM_2004_59_1_a9/