@article{RM_2004_59_1_a8,
author = {V. M. Buchstaber and E. G. Rees},
title = {Rings of continuous functions, symmetric products, and {Frobenius} algebras},
journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
pages = {125--145},
year = {2004},
volume = {59},
number = {1},
language = {en},
url = {http://geodesic.mathdoc.fr/item/RM_2004_59_1_a8/}
}
TY - JOUR AU - V. M. Buchstaber AU - E. G. Rees TI - Rings of continuous functions, symmetric products, and Frobenius algebras JO - Trudy Matematicheskogo Instituta imeni V.A. Steklova PY - 2004 SP - 125 EP - 145 VL - 59 IS - 1 UR - http://geodesic.mathdoc.fr/item/RM_2004_59_1_a8/ LA - en ID - RM_2004_59_1_a8 ER -
V. M. Buchstaber; E. G. Rees. Rings of continuous functions, symmetric products, and Frobenius algebras. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 59 (2004) no. 1, pp. 125-145. http://geodesic.mathdoc.fr/item/RM_2004_59_1_a8/
[1] N. Bourbaki, Éléments de Mathématique. Algèbre, Chapitres 1–3, Hermann, Paris, 1970 ; N. Burbaki, Algebra, gl. 1–3, Fizmatgiz, M., 1962 | MR | MR
[2] V. M. Bukhshtaber, E. G. Ris, “Konstruktivnoe dokazatelstvo obobschennogo izomorfizma Gelfanda”, Funkts. analiz i ego pril., 35:4 (2001), 20–25 | MR | Zbl
[3] V. M. Buchstaber, E. G. Rees, “The Gelfand map and symmetric products”, Selecta Math. (N.S.), 8:4 (2002), 523–535 | DOI | MR | Zbl
[4] V. M. Buchstaber, E. G. Rees, “Multivalued groups, their representations and Hopf algebras”, Transform. Groups., 2:4 (1997), 325–349 | DOI | MR | Zbl
[5] V. M. Buchstaber, E. G. Rees, “Multivalued groups, $n$-Hopf algebras and $n$-ring homomorphisms”, Lie Groups and Lie Algebras, Math. Appl., 433, Kluwer, Dordrecht, 1998, 85–107 | MR | Zbl
[6] V. M. Bukhshtaber, E. G. Ris, “$k$-kharaktery Frobeniusa i $n$-koltsevye gomomorfizmy”, UMN, 52:2 (1997), 159–160 | MR | Zbl
[7] E. Formanek, The Polynomial Identities and Invariants of $n\times n$ Matrices, Amer. Math. Soc., Providence, RI, 1991 | MR | Zbl
[8] E. Formanek, D. Sibley, “The group determinant determines the group”, Proc. Amer. Math. Soc., 112:3 (1991), 649–656 | DOI | MR | Zbl
[9] G. Frobenius, “Über Gruppencharaktere”, Sitzungsber. Preuß. Akad. Wiss. Berlin, 1896, 985–1021 | Zbl
[10] G. Frobenius, “Über die Primfaktoren der gruppendeterminante”, Sitzungsber. Preuß. Akad. Wiss. Berlin, 1896, 1343–1382 | Zbl
[11] I. M. Gelfand, A. N. Kolmogorov, “O koltsakh nepreryvnykh funktsii na topologicheskikh prostranstvakh”, Dokl. AN SSSR, 22:1 (1939), 11–15 | Zbl
[12] H.-J. Hoehnke, “Über komponierbare Formen und konkordante hyperkomplexe Größen”, Math. Z., 70 (1958), 1–12 | DOI | MR | Zbl
[13] H.-J. Hoehnke, K. W. Johnson, “The 1-, 2- and 3-characters determine a group”, Bull. Amer. Math. Soc. (N.S.), 27:2 (1992), 243–245 | DOI | MR | Zbl
[14] R. Mansfield, “A group determinant determines its group”, Proc. Amer. Math. Soc., 116:4 (1992), 939–941 | DOI | MR | Zbl
[15] L. Nyssen, “Pseudo-représentations”, Math. Ann., 306:2 (1996), 257–283 | DOI | MR | Zbl
[16] T. W. Palmer, Banach Algebras and the General Theory of *-Algebras. V. 1: Algebras and Banach Algebras, Encyclopedia Math. Appl., 49, Cambridge Univ. Press, Cambridge, 1994 | MR | Zbl
[17] R. Rouquier, “Caractérisation des caractères et pseudo-caractères”, J. Algebra, 180:2 (1996), 571–586 | DOI | MR | Zbl
[18] R. L. Taylor, “Galois representations associated to Siegel modular forms of low weight”, Duke Math. J., 63:2 (1991), 281–332 | DOI | MR | Zbl
[19] A. Wiles, “On ordinary $\lambda$-adic representations associated to modular forms”, Invent. Math., 94:3 (1988), 529–573 | DOI | MR | Zbl