Kolmogorov and boundary problems of probability theory
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 59 (2004) no. 1, pp. 91-102
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

This paper consists of two parts. The first part traces the history of the boundary problems in probability theory in which Kolmogorov took the most active part. A recently discovered new approach to the solution of boundary problems for random walks satisfying the Cramér condition is presented. This approach is more general, simple, and intuitive than the analytic method proposed by the author in the 1960s. Kolmogorov thought that the construction of such a more general alternative approach was quite desirable because, in his opinion, the purely analytic approach was not quite adequate in essence. The second part of the paper involves the main limit theorems in boundary problems for random walks not satisfying the Cramér condition. A number of recently obtained results are given.
@article{RM_2004_59_1_a6,
     author = {A. A. Borovkov},
     title = {Kolmogorov and boundary problems of probability theory},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {91--102},
     year = {2004},
     volume = {59},
     number = {1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/RM_2004_59_1_a6/}
}
TY  - JOUR
AU  - A. A. Borovkov
TI  - Kolmogorov and boundary problems of probability theory
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2004
SP  - 91
EP  - 102
VL  - 59
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/RM_2004_59_1_a6/
LA  - en
ID  - RM_2004_59_1_a6
ER  - 
%0 Journal Article
%A A. A. Borovkov
%T Kolmogorov and boundary problems of probability theory
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2004
%P 91-102
%V 59
%N 1
%U http://geodesic.mathdoc.fr/item/RM_2004_59_1_a6/
%G en
%F RM_2004_59_1_a6
A. A. Borovkov. Kolmogorov and boundary problems of probability theory. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 59 (2004) no. 1, pp. 91-102. http://geodesic.mathdoc.fr/item/RM_2004_59_1_a6/

[1] A. N. Kolmogoroff, “Über das Gesetz des iterierten Logarithmus”, Math. Ann., 101:1 (1929), 126–135 | DOI | MR | Zbl

[2] A. N. Kolmogoroff, “Über die analytischen Methoden in der Wahrschenlichkeitsrechnung”, Math. Ann., 104 (1931), 415–458 | DOI | MR | Zbl

[3] A. N. Kolmogoroff, “Über die Grenzwertsätze der Wahrschenlichkeitsrechnung”, Izv. AN SSSR. OMEN, 1933, no. 3, 363–372

[4] A. A. Borovkov, “Granichnye zadachi, printsip invariantnosti, bolshie ukloneniya”, UMN, 38:4 (1983), 227–254 | MR | Zbl

[5] A. A. Borovkov, A. A. Mogulskii, A. I. Sakhanenko, “Predelnye teoremy dlya sluchainykh protsessov”, Itogi nauki i tekhniki. Sovr. problemy matem. Fund. napr., 82, VINITI, M., 1995 | MR

[6] A. A. Borovkov, “Predelnye teoremy o raspredelenii maksimuma summ ogranichennykh reshetchatykh sluchainykh velichin. I, II”, Teoriya veroyatn. i ee primen., 5:2 (1960), 137–171 | MR | Zbl

[7] A. A. Borovkov, “Novye predelnye teoremy v granichnykh zadachakh dlya summ nezavisimykh slagaemykh”, Sib. matem. zhurn., 3:5 (1962), 645–694 | MR | Zbl

[8] A. A. Borovkov, “Ob uslovnykh raspredeleniyakh, svyazannykh s bolshimi ukloneniyami”, Sib. matem. zhurn., 37:4 (1996), 732–744 | MR | Zbl

[9] A. A. Borovkov, A. A. Mogulskii, “Predelnye teoremy v zadache dostizheniya granitsy mnogomernym bluzhdaniem”, Sib. matem. zhurn., 42:2 (2001), 289–317 | MR | Zbl

[10] A. A. Mogulskii, “Veroyatnosti bolshikh uklonenii dlya sluchainykh bluzhdanii”, Trudy In-ta matematiki SO AN SSSR, 3 (1983), 93–124 | MR

[11] A. A. Borovkov, Veroyatnostnye protsessy v teorii massovogo obsluzhivaniya, Fizmatgiz, M., 1972 | MR

[12] N. Veraverbeke, “Asymptotic behaviour of Wiener–Hopf factors of a random walks”, Stochastic Process. Appl., 5:1 (1977), 27–37 | DOI | MR | Zbl

[13] D. A. Korshunov, “On distribution tail of the maximum of a random walk”, Stochastic Process. Appl., 72:1 (1997), 97–103 | DOI | MR | Zbl

[14] D. A. Korshunov, “Veroyatnosti bolshikh uklonenii maksimumov summ nezavisimykh slagaemykh s otritsatelnym srednim i subeksponentsialnym raspredeleniem”, Teoriya veroyatn. i ee primen., 46:2 (2001), 387–397 | MR | Zbl

[15] A. A. Borovkov, “Veroyatnosti bolshikh uklonenii dlya sluchainykh bluzhdanii s semieksponentsialnymi raspredeleniyami”, Sib. matem. zhurn., 41:6 (2000), 1290–1324 | MR | Zbl

[16] A. A. Borovkov, K. A. Borovkov, “O veroyatnostyakh bolshikh uklonenii sluchainykh bluzhdanii. I: Raspredeleniya s pravilno menyayuschimisya khvostami”, Teoriya veroyatn. i ee primen., 46:2 (2001), 209–232 | MR | Zbl

[17] S. Asmussen, V. Kalashnikov, D. Konstantinides, C. Klüppelberg, G. Tsitsiashvili, “A local limit theorem for random walk maxima with heavy tails”, Statist. Probab. Lett., 56:4 (2002), 399–404 | DOI | MR | Zbl

[18] S. Asmussen, S. G. Foss, D. A. Korshunov, “Asymptotics for sums of random variables with local subexponential behaviour”, J. Theoret. Probab., 16:2 (2003), 489–518 | DOI | MR | Zbl

[19] A. A. Borovkov, “Large deviations probabilities for random walks in the absence of finite expectations of jumps”, Probab. Theory Related Fields, 125:3 (2003), 421–446 | DOI | MR | Zbl

[20] K. B. Erickson, “The strong law of large numbers when the mean is undefined”, Trans. Amer. Math. Soc., 185 (1973), 371–381 | DOI | MR