L\'evy-based spatial-temporal modelling, with applications to turbulence
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 59 (2004) no. 1, pp. 65-90
Voir la notice de l'article provenant de la source Math-Net.Ru
This paper involves certain types of spatial-temporal models constructed from Lévy bases. The dynamics is described by a field of stochastic processes $X=\{X_t(\sigma)\}$, on a set
$\mathscr S$ of sites $\sigma$, defined as integrals
$$
X_t(\sigma)=\int_{-\infty}^t\int_{\mathscr S}f_t(\rho,s;\sigma)\,Z(\mathrm d\rho\times\mathrm ds),
$$
where $Z$ denotes a Lévy basis. The integrands $f$ are deterministic functions of the form
$f_t(\rho,s;\sigma)=h_t(\rho,s;\sigma)\mathbf 1_{A_t(\sigma)}(\rho,\sigma)$, where
$h_t(\rho,s;\sigma)$ has a special form and $A_t(\sigma)$ is a subset of $\mathscr S\times \mathbb R_{\leqslant t}$. The first topic is OU (Ornstein–Uhlenbeck) fields $X_t(\sigma)$, which represent certain extensions of the concept of OU processes (processes of Ornstein–Uhlenbeck type); the focus here is mainly on the potential of $X_t(\sigma)$ for dynamic modelling. Applications to dynamical spatial processes of Cox type are briefly indicated. The second part of the paper discusses modelling of spatial-temporal correlations of SI (stochastic intermittency) fields of the form
$$
Y_t(\sigma)=\exp\{X_t(\sigma)\}.
$$
This form is useful when explicitly computing expectations of the form
$$
\mathsf E\{Y_{t_1}(\sigma_1)\cdots Y_{t_n}(\sigma_n)\},
$$
which are used to characterize correlations. The SI fields can be viewed as a dynamical, continuous, and homogeneous generalization of turbulent cascades. In this connection an SI field is constructed with spatial-temporal scaling behaviour that agrees with the energy dissipation observed in turbulent flows. Some parallels of this construction are also briefly sketched.
@article{RM_2004_59_1_a5,
author = {O. E. Barndorff-Nielsen and J. Schmiegel},
title = {L\'evy-based spatial-temporal modelling, with applications to turbulence},
journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
pages = {65--90},
publisher = {mathdoc},
volume = {59},
number = {1},
year = {2004},
language = {en},
url = {http://geodesic.mathdoc.fr/item/RM_2004_59_1_a5/}
}
TY - JOUR AU - O. E. Barndorff-Nielsen AU - J. Schmiegel TI - L\'evy-based spatial-temporal modelling, with applications to turbulence JO - Trudy Matematicheskogo Instituta imeni V.A. Steklova PY - 2004 SP - 65 EP - 90 VL - 59 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/RM_2004_59_1_a5/ LA - en ID - RM_2004_59_1_a5 ER -
%0 Journal Article %A O. E. Barndorff-Nielsen %A J. Schmiegel %T L\'evy-based spatial-temporal modelling, with applications to turbulence %J Trudy Matematicheskogo Instituta imeni V.A. Steklova %D 2004 %P 65-90 %V 59 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/RM_2004_59_1_a5/ %G en %F RM_2004_59_1_a5
O. E. Barndorff-Nielsen; J. Schmiegel. L\'evy-based spatial-temporal modelling, with applications to turbulence. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 59 (2004) no. 1, pp. 65-90. http://geodesic.mathdoc.fr/item/RM_2004_59_1_a5/