Turbulent boundary layers at very large Reynolds numbers
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 59 (2004) no. 1, pp. 47-64

Voir la notice de l'article provenant de la source Math-Net.Ru

Andrei Nikolaevich Kolmogorov firmly believed that in the absence of a rigorous self-contained theory of turbulent fluids and gases one must use hypotheses obtained by processing experimental data. This paper begins with a discussion of the hypothesis of complete self-similarity used in the proof of the widely known (Reynolds-number independent) von Kármán–Prandtl logarithmic law for the distribution of velocity in a turbulent shear flow. It is shown that this hypothesis has not been confirmed experimentally. Instead, a hypothesis of incomplete self-similarity is proposed which leads to a power-law dependence on the Reynolds number. It is shown that this law agrees well with experiments for the most important classes of turbulent shear flows (for flows in pipes and boundary layers).
@article{RM_2004_59_1_a4,
     author = {G. I. Barenblatt},
     title = {Turbulent boundary layers at very large {Reynolds} numbers},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {47--64},
     publisher = {mathdoc},
     volume = {59},
     number = {1},
     year = {2004},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/RM_2004_59_1_a4/}
}
TY  - JOUR
AU  - G. I. Barenblatt
TI  - Turbulent boundary layers at very large Reynolds numbers
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2004
SP  - 47
EP  - 64
VL  - 59
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/RM_2004_59_1_a4/
LA  - en
ID  - RM_2004_59_1_a4
ER  - 
%0 Journal Article
%A G. I. Barenblatt
%T Turbulent boundary layers at very large Reynolds numbers
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2004
%P 47-64
%V 59
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/RM_2004_59_1_a4/
%G en
%F RM_2004_59_1_a4
G. I. Barenblatt. Turbulent boundary layers at very large Reynolds numbers. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 59 (2004) no. 1, pp. 47-64. http://geodesic.mathdoc.fr/item/RM_2004_59_1_a4/