Representation of functions by exponentials with positive frequencies
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 59 (2004) no. 1, pp. 171-180 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Some new aspects are studied for the following general problem: what spectra of frequencies enable one to represent an arbitrary function as a series in the corresponding harmonics. Of particular interest is the ‘analytic’ situation in which only positive frequencies are used.
@article{RM_2004_59_1_a11,
     author = {A. M. Olevskii},
     title = {Representation of functions by exponentials with positive frequencies},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {171--180},
     year = {2004},
     volume = {59},
     number = {1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/RM_2004_59_1_a11/}
}
TY  - JOUR
AU  - A. M. Olevskii
TI  - Representation of functions by exponentials with positive frequencies
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2004
SP  - 171
EP  - 180
VL  - 59
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/RM_2004_59_1_a11/
LA  - en
ID  - RM_2004_59_1_a11
ER  - 
%0 Journal Article
%A A. M. Olevskii
%T Representation of functions by exponentials with positive frequencies
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2004
%P 171-180
%V 59
%N 1
%U http://geodesic.mathdoc.fr/item/RM_2004_59_1_a11/
%G en
%F RM_2004_59_1_a11
A. M. Olevskii. Representation of functions by exponentials with positive frequencies. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 59 (2004) no. 1, pp. 171-180. http://geodesic.mathdoc.fr/item/RM_2004_59_1_a11/

[1] A. N. Kolmogorov, “Statsionarnye posledovatelnosti v gilbertovskom prostranstve”, Byul. MGU. Matem., 2:6 (1941), 1–40 ; Рђ. Рќ. Колмогоров, РўРμРѕСЂРёСЏ РІРμроятностРμРNo Рё матРμматичРμская статистика, Наука, Рњ., 1986, 215–255 | MR | Zbl | MR

[2] A. N. Kolmogorov, “Interpolirovanie i ekstrapolirovanie statsionarnykh sluchainykh posledovatelnostei”, Izv. AN SSSR. Ser. matem., 5:1 (1941), 1–40 ; Рђ. Рќ. Колмогоров., РўРμРѕСЂРёСЏ РІРμроятностРμРNo Рё матРμматичРμская статистика, Наука, Рњ., 1986, 255–263 | MR | MR

[3] D. E. Menchoff, “Sur la représentation des fonctions mesurables par des séries trigonometriques”, Matem. sb., 9:3 (1941), 667–692 | MR

[4] N. K. Bari, Trigonometricheskie ryady, Fizmatgiz, M., 1961 | MR

[5] A. Kolmogoroff, “Une série de Fourier–Lebesgue divergente presque partout”, Fund. Math., 4 (1923), 324–328 | Zbl

[6] A. Olevskii, “Completeness in $L^2(\mathbb R)$ of almost integer translates”, C. R. Acad. Sci. Paris. Sér. I Math., 324:9 (1997), 987–991 | MR | Zbl

[7] A. Olevskii, “On the “prediction” problem”, C. R. Math. Acad. Sci. Paris, 334:4 (2002), 279–282 | MR | Zbl

[8] G. Kozma, A. Olevskii, “Representation of non-periodic functions by trigonometric series with almost integer frequencies”, C. R. Acad. Sci. Paris. Sér. I Math., 329:4 (1999), 275–280 | MR | Zbl

[9] G. Kozma, A. Olevskii, “Menshov representation spectra”, J. Anal. Math., 84 (2001), 361–393 | DOI | MR | Zbl

[10] G. Kozma, A. Olevskii, “Random Menshov spectra”, Proc. Amer. Math. Soc., 131:6 (2003), 1901–1906 | DOI | MR | Zbl

[11] G. Kozma, A. Olevskii, “A null series with small anti-analytic part”, C. R. Math. Acad. Sci. Paris, 336:6 (2003), 475–478 | MR | Zbl

[12] A. Olevskii, A. Ulanovskii, “Almost integer translates. Do nice generators exist?”, J. Fourier Anal. Appl., 10:1 (2004), 93–104 | DOI | MR | Zbl

[13] F. G. Arutyunyan, “Predstavlenie izmerimykh funktsii neskolkikh peremennykh trigonometricheskimi ryadami”, Matem. sb., 126:2 (1985), 267–285 | MR | Zbl

[14] A. M. Olevskii, “Modifikatsiya funktsii i ryady Fure”, UMN, 40:3 (1985), 157–193 | MR | Zbl

[15] T. W. Körner, “On the representation of functions by trigonometric series”, Ann. Fac. Sci. Toulouse Math. (6), Special issue (1996), 77–119 | MR | Zbl

[16] R. S. Davtyan, “Predstavlenie izmerimykh funktsii trigonometricheskimi integralami”, Dokl. AN ArmSSR, 53 (1971), 203–207 | MR

[17] A. Olevskii, “Approximation by translates on $\mathbb R$”, Real Anal. Exchange, 24:1 (1998/99), 43–44 | Zbl

[18] I. I. Privalov, Granichnye svoistva analiticheskikh funktsii, GTTI, M.–L., 1950

[19] D. E. Menshov, O skhodimosti po mere trigonometricheskikh ryadov, Tr. MIAN, 32, 1950 | MR | Zbl

[20] A. A. Talalyan, “Predstavlenie izmerimykh funktsii ryadami”, UMN, 15:5 (1960), 77–141 | MR | Zbl

[21] S. V. Konyagin, “O predelakh neopredelennosti trigonometricheskikh ryadov”, Matem. zametki, 44:6 (1988), 770–783 | MR

[22] B. S. Kashin, “Ob odnoi polnoi ortonormirovannoi sisteme”, Matem. sb., 99 (1976), 356–365 | MR | Zbl

[23] I. I. Privalov, “Obobschenie teoremy Paul du Bois-Reymond'a”, Matem. sb., 31:2 (1923), 229–231

[24] B. Dalberg, “On the radial boundary values of subharmonic functions”, Math. Scand., 40 (1977), 301–307 | MR

[25] R. D. Berman, “Boundary limits and an asymptotic Phragmén–Lindelöf theorem for analytic functions of slow growth”, Indiana Univ. Math. J., 41:2 (1992), 465–481 | DOI | MR | Zbl

[26] N. N. Luzin, Integral i trigonometricheskii ryad, Gostekhizdat, M.–L., 1951 | MR

[27] J.-P. Kahane, R. Salem, Ensembles parfaits et séries trigonométriques, Hermann, Paris, 1994 | MR | Zbl

[28] A. M. Sedletskii, “Priblizhenie sdvigami i polnota vesovoi sistemy eksponent v $L^2(\mathbb R)$”, Matem. sb., 123:1 (1984), 92–107 | MR

[29] H. Landau, “A sparse regular sequence of exponentials closed on large sets”, Bull. Amer. Math. Soc., 70 (1964), 566–569 | DOI | MR | Zbl

[30] A. Ulanovskii, “Sparse systems of functions closed on large sets in $\mathbb R^N$”, J. London Math. Soc. (2), 63:2 (2001), 428–440 | DOI | MR | Zbl