@article{RM_2004_59_1_a10,
author = {V. D. Milman},
title = {Phenomena arising from high dimensionality},
journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
pages = {159--169},
year = {2004},
volume = {59},
number = {1},
language = {en},
url = {http://geodesic.mathdoc.fr/item/RM_2004_59_1_a10/}
}
V. D. Milman. Phenomena arising from high dimensionality. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 59 (2004) no. 1, pp. 159-169. http://geodesic.mathdoc.fr/item/RM_2004_59_1_a10/
[1] Y. Bartal, N. Linial, M. Mendel, A. Naor, “On metric Ramsey-type phenomena”, Ann. of Math. (2), 162:2 (2005), 643–709 | DOI | MR | Zbl
[2] J. Bourgain, T. Figiel, V. Milman, “On Hilbertian subsets of finite metric spaces”, Israel J. Math., 55:2 (1986), 147–152 | DOI | MR | Zbl
[3] J. Bourgain, J. Lindenstrauss, V. D. Milman, “Minkowski sums and symmetrizations”, Lecture Notes in Math., 1317, 1988, 44–66 | MR | Zbl
[4] T. Figiel, J. Lindenstrauss, V. D. Milman, “The dimension of almost spherical sections of convex bodies”, Acta Math., 139:1–2 (1977), 53–94 | DOI | MR | Zbl
[5] A. A. Giannopoulos, V. D. Milman, “Euclidean structure in finite dimensional normed spaces”, Handbook of the Geometry of Banach Spaces, 1, North-Holland, Amsterdam, 2001, 707–779 | MR
[6] A. A. Giannopoulos, V. D. Milman, “Asymptotic convex geometry: a short overview”, Different Faces of Geometry, International Mathematical Series (New York), 3, eds. S. K. Donaldson, Ya. Eliashberg, and M. Gromov, Kluver/Plenum, New York, 2004 | MR | Zbl
[7] E. D. Gluskin, “On the sum of intervals”, Lecture Notes in Math., 1807, 2003, 122–130 | MR | Zbl
[8] E. Gluskin, V. Milman, “Randomizing properties of convex high-dimensional bodies and some geometric inequalities”, C. R. Math. Acad. Sci. Paris, 334:10 (2002), 875–879 | MR | Zbl
[9] M. Gromov, “Filling Riemannian manifolds”, J. Differential Geom., 18:1 (1983), 1–147 | MR | Zbl
[10] M. Gromov, Metric Structures for Riemannian and Non-Riemannian Spaces, Based on the 1981 French original “Structures métriques des variétés Riemanniennes”, Birkhäuser, Boston, 1999, with appendices by M. Katz, P. Pansu, and S. Semmes | MR | Zbl
[11] B. S. Kashin, “Poperechniki nekotorykh konechnomernykh mnozhestv i klassov gladkikh funktsii”, Izv. AN SSSR. Ser. matem., 41:2 (1977), 334–351 | MR | Zbl
[12] B. Klartag, “Remarks on Minkowski symmetrizations”, Lecture Notes in Math., 1745, 2000, 109–117 | MR | Zbl
[13] B. Klartag, “$5n$ Minkowski symmetrizations suffice to arrive at an approximate Euclidean ball”, Ann. of Math. (2), 156:3 (2002), 947–960 | DOI | MR | Zbl
[14] B. Klartag, V. Milman, “Isometric Steiner symmetrization”, Invent. Math., 153:3 (2003), 463–485 | DOI | MR | Zbl
[15] M. Ledoux, Concentration of Measure Phenomenon, Math. Surveys Monogr., 89, Amer. Math. Soc., Providence, RI, 2001 | MR | Zbl
[16] A. E. Litvak, V. D. Milman, G. Schechtman, “Averages of norms and quasi-norms”, Math. Ann., 312:1 (1998), 95–124 | DOI | MR | Zbl
[17] M. Mendel, A. Naor, “Euclidean quotients of finite metric space”, Adv. Math., 189:2 (2004), 451–494 | DOI | MR | Zbl
[18] V. D. Milman, “Spektr ogranichennykh nepreryvnykh funktsii, zadannykh na edinichnoi sfere $B$-prostranstva”, Funkts. analiz i ego pril., 3:2 (1969), 67–79 | MR | Zbl
[19] V. D. Milman, “Novoe dokazatelstvo teoremy A. Dvoretskogo o secheniyakh vypuklykh tel”, Funkts. analiz i ego pril., 5:4 (1971), 28–37 | MR | Zbl
[20] V. D. Milman, “Asimptoticheskie svoistva funktsii mnogikh peremennykh, opredelennykh na odnorodnykh prostranstvakh”, Dokl. AN SSSR, 199:6 (1971), 1247–1250 | Zbl
[21] V. D. Milman, “Almost Euclidean quotient spaces of subspaces of finite-dimensional normed spaces”, Proc. Amer. Math. Soc., 94:3 (1985), 445–449 | DOI | MR | Zbl
[22] V. D. Milman, “The heritage of P. Lévy in geometrical functional analysis”, Astérisque, 1988, no. 157/158, 273–301 | MR | Zbl
[23] V. Milman, “Topics in asymptotic geometric analysis”, Geom. Funct. Anal., Special Volume, Part II (2002), 792–815 | MR
[24] V. Milman, A. Pajor, “Regularization of star-bodies by random hyperplane cutoff”, Studia Math., 159:2 (2003), 247–261 | DOI | MR | Zbl
[25] V. D. Milman, G. Schechtman, Asymptotic Theory of Finite-dimensional Normed Spaces, with an appendix by M. Gromov, Lecture Notes in Math., 1200, Springer-Verlag, Berlin, 1986 | MR | Zbl
[26] V. D. Milman, G. Schechtman, “Global versus local asymptotic theories of finite-dimensional normed spaces”, Duke Math. J., 90:1 (1997), 73–93 | DOI | MR | Zbl
[27] V. Pestov, “Amenable representations and dynamics of the unit sphere in an infinite-dimensional Hilbert space”, Geom. Funct. Anal., 10:5 (2000), 1171–1201 | DOI | MR | Zbl
[28] V. Pestov, “Ramsey–Milman phenomenon, Urysohn metric spaces, and extremely amenable groups”, Israel J. Math., 127 (2002), 317–357 | DOI | MR | Zbl
[29] G. Pisier, The Volume of Convex Bodies and Banach Space Geometry, Cambridge Tracts in Math., 94, Cambridge Univ. Press, Cambridge, 1989 | MR | Zbl
[30] N. Tomczak-Jaegermann, Banach–Mazur Distances and Finite-dimensional Operator Ideals, Pitman Monogr. Surveys in Pure Appl. Math., 38, Longman/Wiley, Harlow/New York, 1989 | MR | Zbl