Transformations of non-negative integer-valued matrices that preserve the determinant
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 58 (2003) no. 6, pp. 1200-1201
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

@article{RM_2003_58_6_a8,
     author = {A. \`E. Guterman},
     title = {Transformations of non-negative integer-valued matrices that preserve the determinant},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {1200--1201},
     year = {2003},
     volume = {58},
     number = {6},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/RM_2003_58_6_a8/}
}
TY  - JOUR
AU  - A. È. Guterman
TI  - Transformations of non-negative integer-valued matrices that preserve the determinant
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2003
SP  - 1200
EP  - 1201
VL  - 58
IS  - 6
UR  - http://geodesic.mathdoc.fr/item/RM_2003_58_6_a8/
LA  - en
ID  - RM_2003_58_6_a8
ER  - 
%0 Journal Article
%A A. È. Guterman
%T Transformations of non-negative integer-valued matrices that preserve the determinant
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2003
%P 1200-1201
%V 58
%N 6
%U http://geodesic.mathdoc.fr/item/RM_2003_58_6_a8/
%G en
%F RM_2003_58_6_a8
A. È. Guterman. Transformations of non-negative integer-valued matrices that preserve the determinant. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 58 (2003) no. 6, pp. 1200-1201. http://geodesic.mathdoc.fr/item/RM_2003_58_6_a8/

[1] G. Frobenius, Über die Darstellung der endlichen Gruppen durch lineare Substitutionen, Sitzungsber, Preuss. Akad. Wiss. Berlin, Berlin, 1897, 994–1015

[2] A. Guterman, Linear and Multilinear Algebra, 48:4 (2001), 293–311 | DOI | MR | Zbl

[3] C.-K. Li, S. Pierce, N.-K. Tsing (Eds.), A Survey of Linear Preserver Problems, Linear and Multilinear Algebra, 33. No. 1–2 (Special issues), Taylor Francis, 1992 | MR

[4] K. Głazek, A Guide to the Literature on Semirings and their Applications in Mathematics and Information Sciences, Kluwer, Dordrecht, 2002 | MR

[5] L. B. Beasley, N. J. Pullman, Linear Algebra Appl., 90 (1987), 33–46 | DOI | MR | Zbl