A limit theorem for the number of times the envelope of a Gaussian stationary stochastic process exceeds a high value
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 58 (2003) no. 6, pp. 1213-1214
Cet article a éte moissonné depuis la source Math-Net.Ru
@article{RM_2003_58_6_a14,
author = {A. A. Rusakov},
title = {A~limit theorem for the number of times the envelope of {a~Gaussian} stationary stochastic process exceeds a~high value},
journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
pages = {1213--1214},
year = {2003},
volume = {58},
number = {6},
language = {en},
url = {http://geodesic.mathdoc.fr/item/RM_2003_58_6_a14/}
}
TY - JOUR AU - A. A. Rusakov TI - A limit theorem for the number of times the envelope of a Gaussian stationary stochastic process exceeds a high value JO - Trudy Matematicheskogo Instituta imeni V.A. Steklova PY - 2003 SP - 1213 EP - 1214 VL - 58 IS - 6 UR - http://geodesic.mathdoc.fr/item/RM_2003_58_6_a14/ LA - en ID - RM_2003_58_6_a14 ER -
%0 Journal Article %A A. A. Rusakov %T A limit theorem for the number of times the envelope of a Gaussian stationary stochastic process exceeds a high value %J Trudy Matematicheskogo Instituta imeni V.A. Steklova %D 2003 %P 1213-1214 %V 58 %N 6 %U http://geodesic.mathdoc.fr/item/RM_2003_58_6_a14/ %G en %F RM_2003_58_6_a14
A. A. Rusakov. A limit theorem for the number of times the envelope of a Gaussian stationary stochastic process exceeds a high value. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 58 (2003) no. 6, pp. 1213-1214. http://geodesic.mathdoc.fr/item/RM_2003_58_6_a14/
[1] G. Kramer, M. Lidbetter, Statsionarnye sluchainye protsessy, Mir, M., 1969
[2] S. M. Berman, Ann. Math. Statist., 35:2 (1964), 502–516 | DOI | MR | Zbl
[3] V. I. Piterbarg, Asymptotic Methods in the Theory of Gaussian Processes and Fields, Transl. Math. Monogr., 148, Amer. Math. Soc., Providence, RI, 1996 | MR