@article{RM_2003_58_6_a0,
author = {M. Viana and S. Luzzatto},
title = {Parameter exclusions in {H\'enon-like} systems},
journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
pages = {1053--1092},
year = {2003},
volume = {58},
number = {6},
language = {en},
url = {http://geodesic.mathdoc.fr/item/RM_2003_58_6_a0/}
}
M. Viana; S. Luzzatto. Parameter exclusions in Hénon-like systems. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 58 (2003) no. 6, pp. 1053-1092. http://geodesic.mathdoc.fr/item/RM_2003_58_6_a0/
[1] D. V. Anosov, Geodezicheskie potoki na zamknutykh rimanovykh mnogoobraziyakh otritsatelnoi krivizny, Tr. MIAN, 90, 1967 | MR
[2] D. V. Anosov, V. V. Solodov, “Giperbolicheskie mnozhestva”, Dinamicheskie sistemy – IX, Itogi nauki i tekhniki. Sovr. problemy matem. Fund. napr., 66, VINITI, M., 1991, 12–99 | MR | Zbl
[3] V. Baladi, Positive Transfer Operators and Decay of Correlations, Adv. Ser. Nonlinear Dynam., 16, World Sci. Publ., River Edge, NJ, 2000 | MR | Zbl
[4] L. Barreira, Ya. Resin, “Lectures on Lyapunov exponents and smooth ergodic theory”, Proc. Sympos. Pure Math., 69 (2001), 3–106, Appendix A by M. Brin and Appendix B by D. Dolgopyat, H. Hu and Ya. Pesin | MR | Zbl
[5] M. Benedicks, L. Carleson, “On iterations of $1-ax^2$ on $(-1,1)$”, Ann. of Math. (2), 122:1 (1985), 1–25 | DOI | MR | Zbl
[6] M. Benedicks, L. Carleson, “The dynamics of the Hénon map”, Ann. of Math. (2), 133:1 (1991), 73–169 | DOI | MR | Zbl
[7] M. Benedicks, L. Carleson, Parameter selection in the Hénon family, Preprint, Royal Institute of Technology (KTH), Stockholm, 2002 | MR
[8] M. Benedicks, M. Viana, “Solution of the basin problem for Hénon-like attractors”, Invent. Math., 143:2 (2001), 375–434 | DOI | MR | Zbl
[9] M. Benedicks, L. S. Young, “Sinaĭ–Bowen–Ruelle measures for certain Hénon maps”, Invent. Math., 112:3 (1993), 541–576 | DOI | MR | Zbl
[10] M. Benedicks, L. S. Young, “Markov extensions and decay of correlations for certain Hénon maps”, Astérisque, 261 (2000), 13–56 | MR | Zbl
[11] P. Collet, J.-P. Eckmann, “Positive Lyapunov exponents and absolute continuity for maps of the interval”, Ergodic Theory Dynam. Systems, 3:1 (1983), 13–46 | DOI | MR | Zbl
[12] M. J. Costa, “Saddle-node horseshoes giving rise to global Hénon-like attractors”, An. Acad. Brasil. Ciênc., 70:3 (1998), 393–400 | MR | Zbl
[13] L. J. Díaz, J. Rocha, M. Viana, “Strange attractors in saddle-nodescycles: prevalence and globality”, Invent. Math., 125 (1996), 37–74 | DOI | MR | Zbl
[14] M. Hénon, “A two-dimensional mapping with a strange attractor”, Comm. Math. Phys., 50:1 (1976), 69–77 | DOI | MR
[15] M. Holland, A new proof of the stable manifold theorem for hyperbolic fixed points on surfaces, math/0301235
[16] M. Holland, S. Luzzatto, “Dynamics of two-dimensional maps with criticalities and singularities” (to appear)
[17] A. J. Homburg, T. Young, “Intermittency in families of unimodal maps”, Ergodic Theory Dynam. Systems, 22:1 (2002), 203–225 | DOI | MR | Zbl
[18] M. V. Jakobson, “Absolutely continuous invariant measures for one-parameter families of one-dimensional maps”, Comm. Math. Phys., 81:1 (1981), 39–88 | DOI | MR | Zbl
[19] A. Katok, B. Hasselblatt, Introduction to the Modern Theory of Dynamical Systems, Encyclopaedia Math. Appl., 54, Cambridge Univ. Press, Cambridge, 1995 | MR | Zbl
[20] E. D. Lorenz, “Deterministic nonperiodic flow”, J. Atmospheric Sci., 20 (1963), 130–141 | 2.0.CO;2 class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI
[21] S. Luzzatto, “Combinatorial structure of the parameter space for Lorenz-like and Hénon-like maps”, Workshop on Dynamical Systems, International Centre for Theoretical Physics, Trieste, 1998; http://www.ictp.trieste.it/www<nobr>$_-$</nobr>users/math/prog1069.html
[22] S. Luzzatto, “Bounded recurrence of critical points and Jakobson's theorem”, London Math. Soc. Lecture Note Ser., 274 (2000), 173–210 | MR | Zbl
[23] S. Luzzatto, W. Tucker, “Non-uniformly expanding dynamics in maps with singularities and criticalities”, Inst. Hautes Études Sci. Publ. Math., 89 (1999), 179–226 | DOI | MR | Zbl
[24] S. Luzzatto, M. Viana, “Positive Lyapunov exponents for Lorenz-like families with criticalities”, Astérisque, 261 (2000), 201–237 | MR | Zbl
[25] S. Luzzatto, M. Viana, Lorenz-like attractors without continuous invariant foliations, Preprint, 2003 | MR
[26] R. Mañé, “Hyperbolicity, sinks and measure in one-dimensional dynamics”, Comm. Math. Phys., 100:4 (1985), 495–524 ; “Erratum”, Comm. Math. Phys., 112:4 (1987), 721–724 | DOI | MR | Zbl | DOI | MR | Zbl
[27] R. Mañé, Ergodic Theory and Differentiable Dynamics, Springer-Verlag, Berlin, 1987 | MR
[28] W. de Melo, S. van Strien, “One-dimensional dynamics: the Schwarzian derivative and beyond”, Bull. Amer. Math. Soc. (N.S.), 18:2 (1988), 159–162 | DOI | MR | Zbl
[29] L. Mora, M. Viana, “Abundance of strange attractors”, Acta Math., 171:1 (1993), 1–71 | DOI | MR | Zbl
[30] T. Nowicki, S. van Strien, “Absolutely continuous invariant measures for $C^2$ unimodal maps satisfying the Collet–Eckmann conditions”, Invent. Math., 93:3 (1988), 619–635 | DOI | MR | Zbl
[31] M. J. Pacifico, A. Rovella, M. Viana, “Infinite-modal maps with global chaotic behavior”, Ann. of Math. (2), 148:2 (1998), 441–484 ; “Corrigendum”, Ann. of Math. (2), 149:2 (1999), 705 | DOI | MR | DOI | MR | Zbl
[32] J. Palis, J.-C. Yokkoz, “Fers à cheval non uniformément hyperboliques engendrés par une bifurcation homocline et densité nulle des attracteurs”, C. R. Acad. Sci. Paris Sér. I Math., 333:9 (2001), 867–871 | MR | Zbl
[33] Ya. B Pesin, “Kharakteristicheskie eksponenty Lyapunova i gladkaya ergodicheskaya teoriya”, UMN, 32:4 (1977), 55–112 | MR | Zbl
[34] M. Pollicott, Lectures on Ergodic Theory and Pesin Theory on Compact Manifolds, London Math. Soc. Lecture Note Ser., 180, Cambridge Univ. Press, Cambridge, 1993 | MR | Zbl
[35] A. Pumariño, J. A. Rodríguez, “Coexistence and persistence of infinitely many strange attractors”, Ergodic Theory Dynam. Systems, 21:5 (2001), 1511–1523 | DOI | MR | Zbl
[36] M. Rychlik, “Another proof of Jakobson's theorem and related results”, Ergodic Theory Dynam. Systems, 8:1 (1988), 93–109 | DOI | MR | Zbl
[37] M. Shub, Global Stability of Dynamical Systems, Springer-Verlag, New York, 1987 | MR
[38] S. Smale, “Differentiable dynamical systems”, Bull. Amer. Math. Soc., 73 (1967), 747–817 | DOI | MR
[39] Ph. Thieullen, C. Tresser, L.-S. Young, “Positive Lyapunov exponent for generic one-parameter families of unimodal maps”, J. Anal. Math., 64 (1994), 121–172 | DOI | MR | Zbl
[40] M. Tsujii, “Positive Lyapunov exponents in families of one-dimensional dynamical systems”, Invent. Math., 111:1 (1993), 113–137 | DOI | MR | Zbl
[41] M. Tsujii, “A proof of Benedicks–Carleson–Jacobson theorem”, Tokyo J. Math., 16:2 (1993), 295–310 | MR | Zbl
[42] M. Tsujii, “Small random perturbations of one-dimensional dynamical systems and Margulis–Pesin entropy formula”, Random Comput. Dynam., 1:1 (1992/93), 59–89 | MR
[43] M. Viana, “Strange attractors in higher dimensions”, Bol. Soc. Brasil. Mat. (N.S.), 24:1 (1993), 13–62 | DOI | MR | Zbl
[44] M. Viana, “Stochastic dynamics of deterministic systems”, Lecture Notes XXI Braz. Math. Colloq., IMPA, Rio de Janeiro, 1997
[45] Q. Wang, L. S. Young, “Strange attractors with one direction of instability”, Comm. Math. Phys., 218:1 (2001), 1–97 | DOI | MR | Zbl
[46] Q. Wang, L.-S. Young, “From invariant curves to strange attractors”, Comm. Math. Phys., 225:2 (2002), 275–304 | DOI | MR | Zbl
[47] J.-C. Yoccoz, “Introduction to hyperbolic dynamics”, NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci., 464 (1995), 265–291 | MR | Zbl
[48] L.-S. Young, “Statistical properties of dynamical systems with some hyperbolicity”, Ann. of Math. (2), 147:3 (1998), 585–650 | DOI | MR | Zbl