On cyclic subspaces of the operator $(Vf)(x)=q(x)\displaystyle\int_0^xw(t)f(t)\,dt$
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 58 (2003) no. 1, pp. 177-179 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

@article{RM_2003_58_1_a6,
     author = {I. Yu. Domanov},
     title = {On cyclic subspaces of the operator $(Vf)(x)=q(x)\displaystyle\int_0^xw(t)f(t)\,dt$},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {177--179},
     year = {2003},
     volume = {58},
     number = {1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/RM_2003_58_1_a6/}
}
TY  - JOUR
AU  - I. Yu. Domanov
TI  - On cyclic subspaces of the operator $(Vf)(x)=q(x)\displaystyle\int_0^xw(t)f(t)\,dt$
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2003
SP  - 177
EP  - 179
VL  - 58
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/RM_2003_58_1_a6/
LA  - en
ID  - RM_2003_58_1_a6
ER  - 
%0 Journal Article
%A I. Yu. Domanov
%T On cyclic subspaces of the operator $(Vf)(x)=q(x)\displaystyle\int_0^xw(t)f(t)\,dt$
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2003
%P 177-179
%V 58
%N 1
%U http://geodesic.mathdoc.fr/item/RM_2003_58_1_a6/
%G en
%F RM_2003_58_1_a6
I. Yu. Domanov. On cyclic subspaces of the operator $(Vf)(x)=q(x)\displaystyle\int_0^xw(t)f(t)\,dt$. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 58 (2003) no. 1, pp. 177-179. http://geodesic.mathdoc.fr/item/RM_2003_58_1_a6/

[1] W. M. Wonham, Linear Multivariable Control, Springer-Verlag, Berlin, 1974 | MR

[2] I. Ts. Gokhberg, M. G. Krein, Teoriya volterrovykh operatorov v gilbertovom prostranstve i ee prilozheniya, Nauka, M., 1967 | MR

[3] N. K. Nikolskii, Lektsii ob operatore sdviga, Nauka, M., 1980 | MR

[4] M. M. Malamud, Dokl. RAN, 351:4 (1996), 143–146 | MR

[5] M. M. Malamud, Oper. Theory Adv. Appl., 102 (1998), 143–167 | MR | Zbl

[6] J. H. Kang, Kyungpook Math. J., 30 (1990), 1–6 | MR | Zbl

[7] M. S. Nikolskii, Trudy MIAN, 220, 1998, 210–216 | MR | Zbl