On cyclic subspaces of the operator $(Vf)(x)=q(x)\displaystyle\int_0^xw(t)f(t)\,dt$
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 58 (2003) no. 1, pp. 177-179
Cet article a éte moissonné depuis la source Math-Net.Ru
@article{RM_2003_58_1_a6,
author = {I. Yu. Domanov},
title = {On cyclic subspaces of the operator $(Vf)(x)=q(x)\displaystyle\int_0^xw(t)f(t)\,dt$},
journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
pages = {177--179},
year = {2003},
volume = {58},
number = {1},
language = {en},
url = {http://geodesic.mathdoc.fr/item/RM_2003_58_1_a6/}
}
TY - JOUR AU - I. Yu. Domanov TI - On cyclic subspaces of the operator $(Vf)(x)=q(x)\displaystyle\int_0^xw(t)f(t)\,dt$ JO - Trudy Matematicheskogo Instituta imeni V.A. Steklova PY - 2003 SP - 177 EP - 179 VL - 58 IS - 1 UR - http://geodesic.mathdoc.fr/item/RM_2003_58_1_a6/ LA - en ID - RM_2003_58_1_a6 ER -
I. Yu. Domanov. On cyclic subspaces of the operator $(Vf)(x)=q(x)\displaystyle\int_0^xw(t)f(t)\,dt$. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 58 (2003) no. 1, pp. 177-179. http://geodesic.mathdoc.fr/item/RM_2003_58_1_a6/
[1] W. M. Wonham, Linear Multivariable Control, Springer-Verlag, Berlin, 1974 | MR
[2] I. Ts. Gokhberg, M. G. Krein, Teoriya volterrovykh operatorov v gilbertovom prostranstve i ee prilozheniya, Nauka, M., 1967 | MR
[3] N. K. Nikolskii, Lektsii ob operatore sdviga, Nauka, M., 1980 | MR
[4] M. M. Malamud, Dokl. RAN, 351:4 (1996), 143–146 | MR
[5] M. M. Malamud, Oper. Theory Adv. Appl., 102 (1998), 143–167 | MR | Zbl
[6] J. H. Kang, Kyungpook Math. J., 30 (1990), 1–6 | MR | Zbl
[7] M. S. Nikolskii, Trudy MIAN, 220, 1998, 210–216 | MR | Zbl